
Turk J Phys

(2023) 47: 141 – 182

© TÜBİTAK
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Abstract: The field of quantum resource theory (QRT) has emerged as an invaluable framework for the

examination of small and strongly correlated quantum systems, surpassing the boundaries imposed by traditional

statistical treatments. The fundamental objective of general QRTs is to characterize these systems by precisely

quantifying the level of control attainable to an experimenter. In this review article, we refrain from providing

an exhaustive summary of the extensive literature on QRT. Rather, our focus centers on a specific subliterature

founded upon the theory of majorization. The primary aim is to augment our comprehension of genuine quantum

phenomena manifested across diverse technological applications and incite investigations into novel resource

theories encompassing multiple types of resources. Consequently, we emphasize the underlying similarities

shared by various resources, including bipartite quantum entanglement, quantum coherence, and superposition,

alongside informational, thermal, and generalized nonequilibrium resources.
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1. Introduction

The framework of quantum resource theory (QRT) [1, 2] is mainly geared towards identifying, quan-

tifying, and finding fundamental limits on harvesting the (quantum) resources that are essential for

performing certain tasks in the so-called second-generation quantum technologies (QTs) [3, 4], in-

cluding quantum computing [5–7], quantum sensing [8], quantum metrology [9–12], quantum simu-

lation [13–15], quantum communication [6, 16], and quantum cryptology [17, 18]. By focusing on a

single resource required for a particular task, QRTs provide a powerful tool for developing efficient

quantum protocols and devices and optimizing existing ones. The quantum advantage, which arises

from the ability of quantum systems to utilize information in ways that are not achievable by classical

means, has stimulated an intense effort to understand and exploit the intrinsic quantum properties.

However, the full potential of QTs can only be realized if we can simultaneously identify, quantify,

and manipulate different quantum resources for accomplishing a single task, which requires fusing two

or more QRTs as proposed in Ref. [19]. This is precisely the goal of general QRTs, allowing us to

study the transformations between different quantum resources and fundamental limits on such quan-

tum operations. By investigating the properties, transformations, and interplay of these resources,

researchers have gained valuable insights into the fundamental limits and possibilities of QTs.

Studies over the past two decades have provided a deep understanding of the fundamental

principles and mathematical tools underlying the framework of QRT. At its core, QRT distinguishes

naturally a constrained set of physical operations, known as “free” operations, that does not produce

but can consume the specific resource under consideration. Due to the limited scope of free operations,
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only certain physically realizable quantum states can be prepared by them, which are also referred to

as free states. Any state that cannot be prepared using free operations is considered a resource state.

Consequently, QRT divides physical operations into either free or prohibited categories and likewise

categorizes each quantum state as either a free state or a resource state. Free states serve as a reference

point or benchmark for quantifying and comparing the resource content of other states. This versatile

structure of QRT [1] has been effectively adapted for diverse studies, including those pertaining to

quantum information in the forms of entanglement [20, 21] and coherence [22, 23], and disordered

energy in the forms of nonuniformity [24–26] and athermality [25, 27–29]. Figure 1 visually represents

the hierarchical relationships between resources in quantum information (entanglement, coherence,

and superposition) and nonequilibrium quantum thermodynamics (nonuniformity, athermality, and

nonequilibrium). It succinctly captures the interconnections and dependencies of these fundamental

concepts in their respective domains. This paper adopts these fundamental concepts as the framework

for our survey.

The highlighted aspect of QRTs here is the expansion of the set of resource states by imposing

constraints on the quantum operations that an agent can perform, thereby increasing the potential

applications. For instance, what makes entanglement a resource is the restriction of agents’ exper-

imental abilities to local operations and classical communication (LOCC). Otherwise, protocols like

teleportation [30] would not be possible. When we add new constraints, such as subjecting LOCC

to superselection rules, the performance of tasks where agents utilize entanglement as a resource im-

proves, and even some previously impossible tasks become feasible [31–33]. To fully appreciate the

practical applications of QRTs, it is essential to first grasp the mathematical tools that enable its

analysis. As such, the next section (Section 2) will provide a detailed overview of these tools.

In addition to its foundational role, QRT has also found numerous applications [1]. The frame-

work of QRT provides a systematic way to uncover the limits of QTs, by identifying the boundaries

of what can be achieved with limited resources, providing insights into the ultimate possibilities and

limitations of QTs. Quantification and characterization of these resources are helpful in understanding

the nature and properties of quantum states and can guide experimentalists in assessing and bench-

marking the quality of the resources they have at their disposal. For example, the characterization

and quantification of quantum entanglement, which is a fundamental resource in quantum informa-

tion processing (QIP), is critical for a wide range of applications, including quantum cryptography,

quantum teleportation, and quantum computation. Furthermore, the concepts and techniques from

QRT can be used to study the thermodynamics of quantum systems, including the resource costs and

trade-offs associated with energy transformations, work extraction, and heat dissipation in quantum

processes. By understanding and quantifying the resources involved, researchers can analyze and op-

timize the energetic aspects of quantum thermodynamic processes, contributing to the development

of quantum thermodynamics as a field of study. Finally, QRT has practical applications in areas such

as quantum metrology and quantum sensing, where the goal is to use quantum resources to achieve

enhanced precision in measurements and sensing. QRT offers insights into resource requirements, opti-

mization strategies, and the fundamental limits of measurement accuracy, driving progress in practical

applications such as atomic clocks, gravitational wave detectors, and magnetic field sensors. Overall,

the broad range of applications of QRT highlights its importance as a fundamental framework for

understanding the behavior of quantum systems, and its potential for shaping the future of QTs.

Recent years have witnessed remarkable progress in the practical study of QRTs, with a par-

ticular focus on the characterization, quantification, and manipulation of different quantum resources
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Figure 1: Visualization of the hierarchical relations among resources in (a) quantum information
and (b) nonequilibrium quantum thermodynamics. The resource contained within another Venn
diagram can be considered a specific form of the other. The arrows provide information about
systems that possess these resources. The double-headed arrows represent quantum superposition,
while the texts within the arrows indicate the types of states related to superposition. The merged
reverse-directional arrows signify the system’s interaction with its surroundings, and the texts within
the arrows demonstrate the exchanged physical quantity. Under each resource, the probabilistic
quantities compared in the majorization relationship, which characterizes its manipulation through
relevant quantum operations, are provided. Here, the density matrix, denoted as ρ , represents the
quantum state, while the Gram matrix G provides information about the overlaps between the basis
states in which the density matrix is expressed. β represents the inverse temperature, E signifies
the energy, and Z denotes the partition function. The subscript A indicates that the discussion
pertains to the state of subsystem A. The majorization relationship, which compares these probabilistic
quantities, exhibits limitations in its application. Specifically, in (a), this relationship is limited to
pure superposition states, whereas in (b), it is restricted to energy diagonal states.

[2, 34, 35]. There exist comprehensive reviews in the literature that cover this topic in a manner con-

sistent with this approach [1, 2]. In this work, on the other hand, we provide an overview of the recent

developments in this exciting field, with an emphasis on the practical aspects of QRT. The content

of this review can be outlined as follows. Section 2 contains the foundational principles of QRTs,

encompassing the fundamental concepts of free states, resources, and free operations. Concluding

this section, we outline the key properties associated with resource quantification and emphasize the

role of majorization theory, which will receive further examination in subsequent discussions. Follow-

ing that, we delve into the exploration of these concepts within specific resource theories, including

entanglement in Section 3.1, quantum coherence in Section 3.2, superposition in Section 3.3, and re-

source theories of quantum thermodynamics in Section 4. We conclude our review with an outlook in
Section 5.
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2. Concepts in quantum resource theories

Central to QRTs [1] is a structure that is shaped by three main elements: free states (the set

constructed is denoted by F ), resource states (the set constructed is denoted by R), and free

operations (signified by O ). Of utmost importance, free states represent states that can be accessed

without constraints within the given resource theory, while resource states cannot be obtained from free

states through the actions of free operations; see Figure 2. By studying general QRTs, researchers gain

insights into the nature of quantum resources and their utilization in various tasks. This analysis of

resource states and the characterization of free operations deepen our understanding of the limitations,

capabilities, and trade-offs involved in manipulating quantum resources, facilitating the development

of practical quantum applications.

The purpose of this section is to present a highly simplified introduction to the basics of QRTs

(see section III of Ref. [1] for additional in-depth information). The focus of Section 2.1 is on the

constraints and operations within the framework of QRT and Section 2.2 discusses the characteristics

of a resource quantifier. Furthermore, we dedicate Section 2.3 to emphasizing the importance of

majorization theory as a valuable tool within the realm of QRTs. By including these elements, we

strive to facilitate readers’ comprehension and foster a broad understanding of the subject matter.

2.1. Free states, resources, and operations

One of the central aspects of any QRT is the characterization of different classes of quantum states

and operations based on their resourcefulness and the allowed transformations between them [1, 2].

Our objective here is to clarify the significance of the pivotal concepts of free states, resources, and

operations by exploring their respective meanings, setting the stage for the resource theory framework.

Once again, we emphasize our intention to elucidate the topic in the simplest way feasible. For a more

exhaustive analysis, we direct readers to refer to Ref. [1]. Figure 2 offers a visual elucidation of these

concepts which can be summarized as follows.

(1) Free states: Free states (F ), referred to as the unresourceful states, are the baseline or starting

point in any QRT. These states are considered abundant or readily available and do not possess

any valuable resource characteristics for a specific task. For example, in the resource theory of

entanglement [20, 21]*, separable (i.e., unentangled) states are regarded as free states. Overall,

by characterizing free states, one establishes a reference point against which the value and

usefulness of other states can be evaluated.

(2) Resources: Resources in quantum systems are characterized by valuable properties that enable

specific tasks and exhibit distinctive features. These properties, such as entanglement [20, 21],

play a central role in QIP. Outside the set of free states F , all other states encompass resources

and belong to the set of resource states (R). Resource theory aims to understand, quantify,

and manipulate these quantum resources to leverage their application potential. By accurately

characterizing resources, we gain insights into their underlying principles and develop strategies

for their manipulation and conservation. This knowledge is crucial for the effective utilization

of quantum resources in diverse QIP protocols.

*We note that entanglement serves as a prominent case in quantum resource theories, and therefore, its inclusion here
(and below) is important for understanding the essential concepts indeed. Nonetheless, it is worth highlighting that a
more extensive exploration of entanglement within the resource theory perspective will be undertaken in Section 3.1
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Figure 2: This figure offers a pictorial illustration that encapsulates the fundamental components
central to general quantum resource theory (QRT). It visually portrays essential elements, including
free states (the set they formed is denoted by F ; e.g., τ and ω are two elements of this set), resource
states (the set they formed is denoted by R ; e.g., ρ and σ are two elements of this set), and free
operations (the operation Λ ∈ O that converts one resource state ρ into another resource state σ ;
Λ(ρ) = σ ). In addition to that, the figure depicts the golden state (ρ⋆ , representing the maximally
resourceful state), the quantification of resources (d(ρ, ω) with ω being the free state that is closest to
ρ , a distance-based measure), and the rule governing resource manipulation (namely, Λ(τ) ∈ F for all
τ ∈ F , can be referred to as the golden rule of QRTs [1]). Through its visually engaging representation,
the figure serves as a guide, providing an enhanced understanding of the intricate dynamics and key
components that define the realm of quantum resources within the expansive landscape of QRTs.
The figure presented here has been sourced from Ref. [36] and has been restructured and expanded
accordingly.

(3) Operations: General QRTs examine operations, which are physical processes that manipulate

and transform quantum states. In the context of QRT, free operations are studied to understand

the allowed transformations between different classes of quantum states. Basically, this analysis

aims to identify which operations can convert one resource state into another and how operations

can consume or generate resources. By characterizing the set of permissible operations (O ), we

gain valuable insights into the potential and limitations of manipulating quantum resources. Put

simply, the free operations O are incapable of transforming any state within F into a state that

lies outside the set F . The study of free operations in general QRTs focuses on determining

the transformative capabilities of these operations, their impact on resources, and the required

operational resources for their implementation [1, 2].

A resource theory can be applied to analyze various scenarios by classifying actions as either

free or prohibited, and subsequently exploring the possibilities afforded by the free operations. Within

this framework, certain objects become regarded as resources, as they cannot be generated in the

given setting. Envision the following illustrative example, which can contribute to the understanding

146



TORUN et al./Turk J Phys

of these basic concepts of QRTs introduced above (the introductory section of Ref. [1] also commences

by illustrating an example within the given context). Imagine a student preparing for an exam with

limited resources at their disposal. They are only permitted to use a textbook and their own notes,

while access to the internet or additional reference materials is prohibited. In this context, the student

views internet access and supplementary resources as valuable resources since they are unavailable and

cannot be utilized for exam preparation. By providing a concrete example, the concept of “free” can

be more effectively elucidated, facilitating a better understanding of its meaning and implications.

To summarize, free states refer to quantum states that can be prepared without requiring any

external resources, typically through local operations. On the other hand, resource states exhibit

nonlocal properties that render them valuable for specific quantum tasks. Free operations, which

are operations that can be performed without expending external resources, maintain the set of free

states throughout their execution. In Section 3, we will explore the phenomena of entanglement

(Section 3.1), quantum coherence (Section 3.2), and superposition (Section 3.3) respectively, providing

an understanding of the interplay between the triple {F ,R,O} . As the next phase, Section 4 provides

an exposition on the subject matter, specifically focusing on nonequilibrium quantum thermodynamics.

The relationship between free states F , resource states R , and free operations O serves as the

foundation for quantifying quantum resources. In other words, by establishing resource monotones,

measures that quantify the amount of a particular resource present in a state, we gain a means

to classify, compare, and assess the hierarchy of resource states [20]. Thus, the subsequent section

(Section 2.2) will explore the methodologies employed for precisely measuring and characterizing

quantum resources within the framework of general QRTs.

2.2. Quantifying quantum resources

Quantum resource quantifiers assume a significant role within the framework of QRTs by enabling

a systematic and quantitative evaluation of the resourcefulness exhibited by quantum systems and

operations. These quantifiers serve as essential tools for characterizing, comparing, and assessing

the availability and distribution of resources across diverse quantum scenarios. More specifically,

the knowledge derived from resource quantification contributes to the development of more efficient

quantum algorithms, protocols, and technologies, thereby pushing the boundaries of what can be

achieved in the quantum realm [1].

To establish a resource measure with rigor, additional structural elements are necessary, typically

expressed through a set of axioms. Systematic research endeavors have been dedicated to the extensive

characterization and computational analysis of resource measures in the context of general QRTs [37–

43]. For instance, Regula [39] introduced a unified framework for mathematically characterizing various

measures of general quantum resources. This framework enables a systematic definition of faithful

quantifiers within any convex quantum resource theory. In section VI of Ref. [1], Chitambar and Gour

initiated their investigation through an axiomatic approach, whereby they sought to identify a set of

essential and desirable properties that must be upheld by any resource measure employed in the realm

of QRTs. Subsequently, they undertook a comprehensive examination of various categories of specific

resource measures that can be effectively employed in the broader analysis of QRTs. In accordance

with Ref. [1], the defining characteristics of a proper resource quantifier can be elucidated as follows:

(A1) Nonnegativity: A valid resource measure M should assign a value of zero to the set of free
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states F , which represent states that do not possess any resourcefulness. In general,

M(ρ) ≥ 0, (2.1)

with equality holding if and only if ρ ∈ F .

(A2) Monotonicity: The resource quantifier M should exhibit monotonic behavior, meaning that it

does not increase under the action of free operations Λ(·). This axiom ensures that the measure

reflects the intuitively desirable notion that resourcefulness should not be increased by using the

corresponding free operations. That is,

M
(
Λ(ρ)

)
≤ M(ρ). (2.2)

(A3) Convexity: The measure M should be a convex function, meaning that it assigns a higher

value to convex combinations of resource states compared to nonconvex combinations. Convexity

captures the idea that combining multiple resources should lead to a more valuable composite

resource. That is,

∑
i

piM(ρi) ≥ M

(∑
i

piρi

)
. (2.3)

(A4) Subadditivity: This axiom reflects the behavior of the measure when applied to composite

systems. It implies that the resource measure of a composite system should be less than or equal

to the sum of the measures of its individual subsystems. Namely, for all ρ and σ , M is additive

under tensor products:

M(ρ⊗ σ) ≤ M(ρ) + M(σ). (2.4)

(A5) Asymptotic continuity: This axiom pertains to the behavior of the measure in the asymptotic

limit. It requires that the measure remains continuous as the size of the system increases, allowing

for a smooth transition from finite to infinite-dimensional systems.

Resource quantification plays a crucial role in analyzing the efficiency and limitations of quantum

protocols. For a given initial state ρ and a target state σ , by comparing resource measures before and

after transformations, we can gain valuable insights into the effectiveness of operations in manipulating

and enhancing quantum resources. This approach optimizes resource manipulation strategies, leading

to improved resource utilization. In our discussion of different resource theories, we will explore various

resource quantifiers and their associated properties. Moreover, readers are encouraged to refer to [1]

for a more extensive treatment of the subject matter.

2.3. Majorization as a tool for resource theory

Majorization captures the intuitive idea that the components of vector x are typically “less spread

out” or “more nearly equal” than those of vector y . This can be expressed by stating that x is

majorized by y , written x ≺ y . Marshall et al. [44] provide historical insights into majorization and

extensively cover its theoretical foundations and applications. Importantly, with broad utility across
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mathematics [44], economics [45–47], statistics, and quantum physics [48–50], majorization theory

serves as a powerful tool for comparing component distributions, analyzing inequalities [44, 51, 52],

optimizing systems, and exploring entanglement in quantum mechanics [53–55]. Its elegant framework

facilitates the understanding of various phenomena and drives advancements in multiple disciplines.

The majorization theory is a mathematical concept [51] used for comparing two real vectors p

and q , where p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) are the respective elements of the vectors.

Specifically, given two vectors p and q , with p ≺ q denoting the majorization relationship between

them (i.e., p is majorized by q), the ensuing condition applies: For every value of k ranging from 1

to n− 1, the sum of the k largest elements in {pi} is less than or equal to the sum of the k largest

elements in {qi} . Mathematically, it can be expressed as

k∑
i=1

p↓i ≤
k∑
i=1

q↓i for all k = 1, 2, . . . , n− 1, (2.5)

with equality holding when k is equal to n . Here, p↓i and q↓i denote the i-th largest elements in the

vectors p and q , respectively, when sorted in nonincreasing order. To recap, p is majorized by q , if

the cumulative sums of elements in p are always less than or equal to the corresponding sums in q

when considering the largest k elements. For further insights into majorization theory, Ref. [44] offers

a wealth of information.

Majorization plays a fundamental role in quantifying and comparing entanglement levels in

bipartite quantum states [53–55]. Clearly, Nielsen’s study [53] stands as a seminal contribution that

introduced and catalyzed subsequent investigations into the application and implications of this theory.

This pioneering work [53] provided the bedrock for a multitude of subsequent studies, establishing a

robust framework for further exploration and advancement in the field. As demonstrated in Ref. [53],

for a bipartite quantum state |ψ⟩AB , the possibility of transforming it into another bipartite quantum

state |ϕ⟩AB can be determined by considering majorization criteria. Specifically, let ρA (σA ) be the

state of the first subsystem, which is obtained by performing a partial trace over the second subsystem,

that is, ρA = trB(ρ) (σA = trB(σ)), where ρ = |ψ⟩AB ⟨ψ| (σ = |ϕ⟩AB ⟨ϕ|). The vector of eigenvalues

corresponding to ρA (σA ), arranged in nonincreasing order, is denoted by λ(ψ) (λ(ϕ)). Then, |ψ⟩AB
can be transformed into |ϕ⟩AB through free operations if and only if λ(ψ) is majorized by λ(ϕ). In

shorthand, this condition is expressed as |ψ⟩AB → |ϕ⟩AB if and only if λ(ψ) ≺ λ(ϕ) [53]. Overall,

majorization forms the basis for quantitatively analyzing entanglement in bipartite pure quantum

systems [53–55], and specific example(s) will be discussed in Section 3.1 to probe this topic further.

In addition to these, the concept of majorization serves as a valuable tool in numerous other

studies and investigations. For instance, currently, how majorization can be used to analyze the

performance of a quantum Otto engine in the quasistatic regime was investigated in Ref. [56]. Buscemi

and Gour [57] explored the role of majorization and its variants in physical resource theories, introduced

a unifying framework using quantum relative Lorenz curves, and assessed transformations between

quantum states, particularly in the context of resource theory of athermality. In a distinct study

presented by Buscemi et al. [58] ,a simple sufficient condition, based on one-shot relative entropies

and quantum relative majorization, was established to decide the existence of a quantum channel

transforming one pair of quantum states into another, with implications on the rate of transformation

and applications to resource theories of athermality and coherence. As a result of its broad applicability
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and robust theoretical underpinnings, majorization has emerged as an indispensable and fundamental

tool in a multitude of research investigations.

3. Quantum information

Embracing a wide spectrum of concepts [28, 37, 59–96], the explored approaches in QRTs encompass

pivotal exemplifications like entanglement [20, 21], quantum coherence [22, 66, 70], and superposition

[97]. Over the past two decades, the field of QRT has experienced rapid growth, surpassing the point

where it can be comprehensively captured in a single review. Therefore, we recognize the presence

of previous reviews that concentrated on specific resource theories [1, 20, 21, 23], offering valuable

guidance through our survey. Our intention here is to provide a brief analysis of entanglement (Sec-

tion 3.1), followed by a critical exploration of coherence (Section 3.2) and superposition (Section 3.3)

theories. By establishing their conceptual affinities, this study seeks to foster a deeper understanding

of the interrelationships between these theoretical frameworks (see Figure 1a). As we proceed to the

next section, we find the presented details on entanglement and quantum coherence to be sufficiently

elucidating. It is worth reiterating that our primary focus pertains to the theory of superposition.

3.1. Resource theory of entanglement

The theory of entanglement stands out as an illustrious and highly regarded paradigm within the

realm of QRTs. Over the last two decades, extending to the current date, extensive study and

analysis have been dedicated to this subject [20, 21, 59, 98–104]. In their comprehensive review

of entanglement measures, Plenio and Virmani [20] concentrated on specific topics (i.e., tools for

quantifying entanglement), providing a thorough exploration of each. Shortly thereafter, Horodecki et

al. [21] undertook a detailed review, delving into various facets of quantum entanglement, thus offering

an authoritative analysis of the subject. Undoubtedly, as the most celebrated exemplar of general QRT,

the study of entanglement unravels profound insights into the intricate nature of quantum correlations

[105, 106] and offers invaluable tools for manipulating, characterizing, and harnessing this captivating

resource in a myriad of information-theoretic tasks. Given the availability of extensive reviews on

the resource theory perspective of entanglement [20, 21], the objective of this section is to present

a concise outline of quantum entanglement, serving as a reference point for exploring a wide range

of approaches in QRT. It is worth noting that our explanations will follow a similar flow to the one

presented in Ref. [1].

The theory of entanglement encompasses a physical scenario where spatially separated parties

(e.g., let us consider two parties Alice and Bob, see Fig. 1 in Ref. [20]) have the ability to freely

exchange classical information while all quantum information is processed locally using completely

positive and trace-preserving (CPTP) maps� on individual subsystems. The class of local operations

and classical communication (LOCC) corresponds to the set of operations that can be implemented

within this restriction, representing the free operations in the context of quantum entanglement, as

they do not generate or consume entanglement. Importantly, the sequential nature of LOCC ensures

�A map E is said to be trace preserving (TP) if Tr(E(ρ)) = Tr(ρ) . One also requires that E maps positive operators
to positive operators. Also, a map E is said to be completely positive (CP) if E ⊗ Id is positive for all d ∈ N , where Id
denotes the d × d identity operator. Thus, a map satisfying these two properties is said to be completely positive trace
preserving (CPTP).
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that they preserve the separability of states, i.e., applying LOCC to separable states will always result

in separable states [21].

Separable states—free states in the context of quantum entanglement—are quantum states

expressed as a convex combination of product states, characterized by the absence of entanglement.

For the composite system with two parties, a separable state (i.e., unentangled) can be written as

ρsep =
∑
i

piρ
A
i ⊗ ρBi . (3.1)

Here, {pi ≥ 0}i represents the probabilities associated with each product state, and ρAi and ρBi are

the density matrices of the individual subsystems of Alice and Bob, respectively. The concept of

separable states extends naturally to N -party systems, allowing for a description of a separable state

as a convex combination of product states for each subsystem. That is, in the case of an N -party

composite system, a separable state can be expressed as
∑

i qiρ
(1)
i ⊗ ρ

(2)
i ⊗ . . .⊗ ρ

(N)
i , where {qi ≥ 0}i

denotes the probabilities associated with each product state, and ρ
(k)
i for k = 1, 2, . . . , N represents

the density matrix of the k -th subsystem (i.e., capturing its local properties). This encapsulates the

separability of the state by expressing it as a combination of local density matrices for each party,

reflecting the absence of entanglement between the subsystems.

The definition of separable states, as described by Eq. (3.1) for bipartite systems, appears obvious

upon careful consideration. However, it is essential to acknowledge that more intricate scenarios can

arise, leading to a broader range of possibilities [21]. In other words, the study of separable states

has led to the exploration of various families with distinct properties. For instance, one such family

is fully separable states, where each subsystem exists in a pure state, allowing for a product state

representation without entanglement. Another notable family is biseparable states, which can be

partitioned into two subsystems such that each subsystem is separable. This characterization enables

a deeper understanding of entanglement by focusing on the separability of subsystems within larger

quantum systems. Additionally, certain classes of mixed states, such as Werner states [107, 108] and

isotropic states [109, 110], demonstrate separability under specific conditions. For instance, the two-

qubit Werner state [107] is described by the density operator ρWz = z |Ψ−⟩ ⟨Ψ−|+ ([1− z]/4)12 ⊗12 ,

where 12 denotes the two-dimensional identity operator and |Ψ−⟩ = (|01⟩ − |10⟩)/
√

2 represents

the singlet state. Obviously, the Werner state ρWz is characterized by the parameter z ∈ [0, 1].

Specifically, for z ∈
(
1
3 , 1
]
, the Werner state ρWz is entangled; however, for z ∈

[
0, 13
]
, the Werner

state ρWz is separable [107].

On the other hand, resource states are quantum states that possess nontrivial entanglement

and are valuable for performing QIP tasks. These states exhibit correlations between subsystems

that cannot be described using classical resources alone, enabling tasks such as quantum teleportation

[30], superdense coding [111], and quantum key-distribution [112]. In the case of quantum entan-

glement, several families of resource states have been extensively studied due to their significance

[21]. These include maximally entangled states, such as Bell states |Ψ∓⟩ = (|01⟩ ∓ |10⟩)/
√

2 and

|Φ∓⟩ = (|01⟩ ∓ |10⟩)/
√

2 [20, 21], and Greenberger-Horne-Zeilinger states |GHZ⟩ = (|000⟩+ |111⟩)/
√

2

[113], which exhibit the highest degree of entanglement and enable various applications in quantum

communication and computation [114].

We now embark upon the examination of entanglement measures which provide a quantitative
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assessment of the amount of entanglement present in a given state. Entanglement measures possess

important properties discussed in Section 2.2. They are nonnegative and vanish for separable states,

reflecting the absence of entanglement in such states. Mathematically, an entanglement measure E
satisfies E(ρ) ≥ 0 for all quantum states ρ , and E(ρ) = 0 if and only if ρ is separable. Entanglement

measures are also monotonic under LOCC, meaning that the (average) amount of entanglement

cannot increase under free operations. Additionally, entanglement measures are convex, reflecting

the fact that mixing entangled states cannot increase the overall entanglement. Mathematically, for

any convex combination pρ+ (1−p)σ of quantum states ρ and σ , the entanglement measure satisfies

E
(
pρ+ (1−p)σ

)
≤ pE(ρ) + (1−p)E(σ). Various types of entanglement measures have been developed

to capture different aspects of quantum entanglement [20] and can be used to compare and classify

different resource states based on their entanglement content.

Entanglement measures play a crucial role in the theory of entanglement [20, 21], as they allow for

the comparison, classification, and manipulation of different entangled states. A variety of measures

have been developed to quantify entanglement [20], and among them, three notable ones can be

succinctly summarized as follows. First, the entanglement entropy [20]

E(ρ) = −Tr(ρ log ρ), (3.2)

which is based on the von Neumann entropy of the reduced density matrix. Second, the concurrence

C(ρ), which quantifies entanglement in bipartite systems and is defined as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (3.3)

where λi are the square roots of the eigenvalues of the matrix (ρρ̃)1/2 in decreasing order, and

ρ̃ is the spin-flipped state of ρ [115]. Finally, the entanglement of formation (EoF) [116, 117] for

a bipartite pure state |ψ⟩AB is determined by the entropy of a subsystem, specifically given by

Ef (|ψ⟩AB) = S(ρA), where ρA = trB(|ψ⟩AB⟨ψ|) represents the reduced density matrix of |ψ⟩AB
on subsystem A . More generally, the von Neumann entropy S(ρ) = −tr(ρ log ρ) is employed to

quantify the information content of the quantum state ρ . For a bipartite mixed state ρAB , the EoF

is defined as the minimum average entanglement over all possible pure state decompositions:

Ef (ρAB) = min
∑
i

piEf (|ψi⟩AB), (3.4)

where ρAB =
∑

i pi|ψi⟩AB⟨ψi| represents the convex combination of pure states |ψi⟩ with associated

probabilities pi . Entanglement measures have operational interpretations, meaning that they can be

related to specific tasks or capabilities in QIP. For example, the entanglement of formation quantifies

the amount of entanglement required to create a given entangled state. It represents the minimum

amount of entanglement needed to prepare a particular state using only LOCC. The entanglement

of formation is not directly related to the efficiency of entanglement distillation protocols, which aim

to extract highly entangled states from partially entangled ones. Entanglement entropy, on the other

hand, characterizes the amount of entanglement in a quantum state. It provides insights into the

number of maximally entangled states that can be generated from a given state by LOCC. However,

it is not directly linked to the efficiency of entanglement distillation protocols [20, 21].

Section 2.3 presents a brief introduction to majorization, which establishes the fundamental

framework for subsequent discussions and analyses. The significance of majorization theory in the
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quantification and comparative analysis of entanglement levels in bipartite quantum states cannot

be overstated [53–55]. Nielsen’s study [53] holds a paramount position as it introduced and cat-

alyzed subsequent investigations into the practical implementation and theoretical implications of

this fundamental theory. Soon after, in the review by Nielsen and Vidal [54], key aspects of ma-

jorization theory were introduced and significant advancements in the field of bipartite entanglement

transformations were explored. The majorization condition states that a quantum state, represented

in Schmidt form as |ψ⟩AB =
∑d−1

i=0 ψi |i⟩A |i⟩B , can be transformed into another state, denoted as

|ϕ⟩AB =
∑d−1

i=0 ϕi |i⟩A |i⟩B , via LOCC with unit probability if and only if the eigenvalues vector of the

reduced density matrix, denoted as λ(ψ), is majorized by the eigenvalues vector of λ(ϕ). This ma-

jorization relationship is expressed as λ(ψ) ≺ λ(ϕ), where λ(ψ) and λ(ϕ) represent the decreasingly

ordered vectors of eigenvalues obtained from the reduced density matrices ρψA and ρϕA , respectively.

An example will now be provided to further facilitate the discussion. The maximally entangled state

for the bipartite case in a d-dimensional system is represented as:

|Φd⟩ =
1√
d

d−1∑
i=0

|i⟩A |i⟩B . (3.5)

The state |Φd⟩ is considered maximally entangled (in Figure 2, for instance, we have ρ⋆ := |Φd⟩ ⟨Φd|
for bipartite entanglement) as it achieves the highest possible degree of entanglement between the two

subsystems. The state |Φd⟩ given in Eq. (3.5) can be effectively and deterministically transformed into

any arbitrary state by means of LOCC with a probability of unity, i.e., |Φd⟩ is majorized by any other

state |ψ⟩AB , λ(Φd) ≺ λ(ψ), where λ(Φd) = (1d ,
1
d , . . . ,

1
d). In closing, the influence of majorization

extends to the domain of entanglement theory and warrants thorough exploration and discussion in

appropriate contexts, as will become evident through the subsequent sections.

The field of quantum entanglement has undergone significant advancements since its inception,

making it a pioneering area of research. Initially, exploratory investigations paved the way for a deeper

understanding of this phenomenon. As time progressed, the studies in this field intensified, gaining

momentum and resulting in a vast and substantial body of literature [21]. Today, the scientific commu-

nity is equipped with a comprehensive and extensive knowledge base that encapsulates the intricacies

of quantum entanglement. The evolution of research in quantum entanglement has been marked by

remarkable growth and profound developments. The exploration of this intricate phenomenon has

captivated the scientific community, prompting rigorous investigations and stimulating intellectual

discourse. Significantly, entanglement has served as a paradigmatic example showcasing the utility of

quantum-specific properties as valuable resources. Its profound implications have not only stimulated

extensive research on entanglement itself but have also fostered the exploration and investigation of

other fundamental quantum mechanical properties.

3.2. Resource theory of coherence

Quantum coherence pertains to the intrinsic property of quantum systems, wherein they exhibit a

simultaneous existence in multiple states, enabling the occurrence of interference phenomena. It

plays a pivotal role as a resource, enabling the implementation of quantum algorithms and facilitating

computational speedup. Consequently, it is an actively researched phenomenon in emerging fields such

as quantum metrology [9–12] and quantum algorithms [5]. Within the scope of recent scientific inquiry,
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Streltsov, Adesso, and Plenio [23] explored and assessed the progress of this rapidly expanding field

of research, which encompasses the study of quantum coherence in terms of its characterization [118–

121], quantification [122–136], manipulation [137–153], dynamical evolution [154–161], and practical

applications[162, 163]. Therefore, to gain a more thorough grasp of the subject matter, we highly

recommend consulting Ref. [23], as it encompasses a broader range of information surpassing the

discussed scope here.

Coherence is a concept that relies on the choice of a specific basis. It is of utmost significance to

emphasize that the selection of the reference basis should be aligned with the fundamental principles

and laws of physics relevant to the problem at hand. By aligning the reference basis with the specific

physics governing the system under consideration, one can ensure a comprehensive understanding and

analysis of the coherence phenomena within the given context. In that connection, we consider a

particular basis {|i⟩ : i = 0, 1, . . . , d− 1} in the d-dimensional Hilbert space Hd , which we designate

as our preferred basis. This basis is characterized by its completeness and orthonormality. Quantum

states that possess a diagonal representation in terms of this specific basis are referred to as incoherent

states, constituting a set labeled by I [22, 164]. Hence, all incoherent states δ ∈ I are of the form

δ =

d−1∑
i=0

δi |i⟩ ⟨i| , (3.6)

where
∑

i δi = 1 such that δi ≥ 0 for all i = 0, 1, . . . , d − 1. The set of incoherent states forms a

fundamental reference point for comparing and quantifying coherence [22]. Coherence measures are

defined based on the distinguishability between a given state and the set of incoherent states (again,

see Figure 2). These measures provide a quantitative way to evaluate the coherence content of a state

and track its transformation under various operations [137–150, 152, 153].

Similar to other resource theories, states that lie outside the set of free states are regarded

as resources within the RTC, specifically referring to coherent states. A finite d-dimensional pure

coherent state is given by

|ψ⟩ =

d−1∑
i=0

eiθiψi|i⟩
(
ψi ∈ R, 0 ≤ θi ≤ π

)
, (3.7)

where {ψi : i = 0, 1, . . . , d − 1} are nonnegative real numbers arranged in nonincreasing order

(ψk ≥ ψk+1 ≥ 0), and satisfying
∑d−1

i=0 ψ
2
i = 1. Needless to say, in order to facilitate an examination

of quantum coherence, it is essential to consider Eq. (3.7) with multiple nonzero values of ψi . This

requirement arises from the intrinsic nature of coherence, which involves the presence of distinct

quantum superposition states characterized by nonzero coefficients. By incorporating multiple nonzero

values of ψi in Eq. (3.7), we ensure the inclusion of the necessary components to explore and analyze

the intricate phenomena associated with quantum coherence. Here, without loss of generality, we can

and from now on will assume that θi = 0 for all i , as all these complex phases can also be eliminated

by diagonal unitaries, which are always assumed to be free operations in any version of the RTC. A

compact mathematical summary for quantum states in RTC is then as follows:{
CF = δ ∈ D(Hd) : δ =

d−1∑
i=0

δi |i⟩⟨i| , δi ≥ 0,

d−1∑
i=0

δi = 1

}
, (3.8)

154



TORUN et al./Turk J Phys

{
CR = σ ∈ D(Hd) : σ /∈ CF

}
, (3.9)

where D(Hd) denotes the set of density operators on Hd . Here, we use the notations CF and CR to

refer to the sets of incoherent states and coherent states, respectively. Moreover, we denote by |Ψd⟩
the maximally coherent state in the reference basis with entries ψi = 1√

d
, that is,

|Ψd⟩ =
1√
d

d−1∑
i=0

eiθi |i⟩ . (3.10)

Since all other d-dimensional coherent states can be generated from |Ψd⟩ by means of the free

operations, this definition regards as a unit of RTC — coherence bit [23]. Maximally coherent states

hold a pivotal position in the realm of quantum information science and its associated disciplines.

These states embody the utmost level of coherence attainable within a specific quantum system (in

Figure 2, for instance, we have ρ⋆ := |Ψd⟩ ⟨Ψd| for RTC), rendering them valuable resources for

diverse quantum protocols and tasks [9]. Comprehending and harnessing the potential of maximally

coherent states are indispensable for unlocking the complete range of capabilities offered by quantum

technologies and propelling the boundaries of quantum information science.

To delve into the dynamical characteristics of quantum coherence, a complete understanding of

its evolution under suitable transformations, referred to as free operations, is imperative [23]. Ideally,

one aims to ascertain these operations based on the inherent physical properties of the underlying

resource. One possible strategy is to define free operations through a set of axiomatic considerations.

This involves discerning the natural constraints that a specific class of free operations should meet

and exploring the collection of all channels that satisfy these constraints. The fundamental premise

guiding this approach is that free operations should not introduce any additional coherence. Within

the scope of this study, we direct our attention towards several renowned operations (see Fig. 2 in

Ref. [165]). These operations are widely recognized in the relevant literature [23].

Incoherent operations: The class of quantum operations known as incoherent operations

(IOs) can be characterized by the presence of Kraus operators {Kn} that satisfy two key conditions.

First, the operators must adhere to the condition
∑

nK
†
nKn = 1 , ensuring the preservation of

probability. Second, for any input state δ belonging to the set of incoherent states I (that is, δ ∈ I ),

the resulting output state ρn is given by

ρn =
KnδK

†
n

Tr
(
KnδK

†
n

) ⊆ I (3.11)

for all n , where Tr(·) represents the trace operation. This implies that incoherent states remain

incoherent under IOs. This property arises from the requirement that the Kraus operators {Kn}
satisfy KnσK

†
n ⊂ I for all n , where σ denotes any incoherent state. Consequently, any initial

incoherent state subjected to an IO will result in a final state that remains within the set of incoherent

states, preserving its incoherent nature throughout the operation.

Physically incoherent operations: A coherence-free operation is referred to as a physically

incoherent operation (PIO) if and only if it can be expressed as a convex combination of maps, where

155



TORUN et al./Turk J Phys

each map is uniquely defined by its corresponding set of Kraus operators such that

Km = UmPm =
∑
x

eiθx |πm(x)⟩⟨x|Pm. (3.12)

In the given context, a set of operators {Pm : m = 1, 2, . . . , n} is defined as an orthogonal and

complete collection of incoherent projectors on the primary system. The function πm(x) represents

permutations, which indicate the rearrangement or reordering of elements within the parameter x .

Strictly incoherent operations: A strictly incoherent operation (SIO), denoted as E , is

characterized by a set of Kraus operators Kj for j = 1, 2, . . . , n . These operators possess a crucial

property: For any input state ρ , the SIO transforms the dephased state ∆(ρ) in the same manner

as the application of the dephasing operation to the transformed state ∆(KjρKj
†) for all j ; that is,

Kj∆(ρ)Kj
† = ∆(KjρKj

†) for all j . Here, the completely dephasing map ∆(·) is defined as follows:

ρ 7→ ∆(ρ) =
d−1∑
i=0

|i⟩⟨i|ρ|i⟩⟨i|. (3.13)

where {|i⟩ : i = 0, 1, . . . , d− 1} represents the basis states and d denotes the dimension of the system.

This property of a SIO ensures the preservation of the dephased structure: The resulting state after

the SIO transformation remains in a dephased form.

Dephasing-covariant incoherent operations: A quantum operation E is considered

dephasing-covariant with respect to the preferred subspaces if it commutes with the associated de-

phasing operation ∆(·). This condition is expressed as E ◦ ∆ = ∆ ◦ E . An important consequence of

dephasing-covariance is observed when considering incoherent states. Specifically, if E is dephasing-

covariant, it follows that for any incoherent state δ ∈ I , the action of E on δ is equivalent to

applying the dephasing operation first and then applying E . Mathematically, this can be expressed as

E(δ) = E(∆(δ)) = ∆(E(δ)). Consequently, the resulting state E(δ) remains invariant under dephasing,

which implies that it retains its incoherent nature. Thus, dephasing-covariant incoherent operations

(DIOs) preserve the incoherence of states.

Maximal incoherent operations: An operation E is classified as a maximal incoherent

operation (MIO) if it maps any incoherent state δ given in Eq. (3.6) to another incoherent state,

i.e., E(δ) ∈ I for all δ ∈ I . The concept of MIOs is important in the study of quantum coherence.

By exclusively affecting incoherent states while leaving coherent aspects untouched, MIOs provide a

useful framework for understanding and controlling coherence in quantum systems. These operations

play a crucial role in coherence theory, enabling the development of coherence-preserving quantum

devices and coherent control strategies.

Coherence measures play a crucial role in characterizing and quantifying the degree of coherence

present in quantum systems [122–126, 128, 129, 131, 132, 134–136]. They provide a quantitative

measure to assess the resourcefulness of coherent states for various QIP tasks. Two well-known proper

measures of coherence are the relative entropy of coherence and the ℓ1 -norm of coherence. The relative

entropy of coherence, denoted as Crel. ent. , is given by:

Crel. ent. = S(ρdiag) − S(ρ), (3.14)

where S represents the von Neumann entropy and ρdiag is the state obtained from ρ by deleting all

off-diagonal elements. It quantifies the difference between the entropy of the original state and the
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entropy of the state with eliminated coherences. The ℓ1 -norm of coherence, denoted as Cℓ1 , is defined
as:

Cℓ1 =
∑
i ̸=j

|ρij |, (3.15)

where ρij denotes the off-diagonal elements of the state ρ =
∑

i,j ρij |i⟩ ⟨j| . This measure computes

the sum of the absolute values of all off-diagonal elements, providing a measure of the total coherence

in the state. For incoherent states described by Eq. (3.6), both coherence measures yield zero, i.e.,

Crel.ent(δ) = Cℓ1(δ) = 0. This result confirms that incoherent states have no off-diagonal elements

and, therefore, lack coherence according to these measures.

Moreover, the robustness of coherence, initially proposed by Napoli et al. [166] and Piani et

al. [167], serves as an essential coherence monotone. It quantifies the minimum amount of mixing

necessary to render a given state ρ incoherent. This measure, denoted as RC(ρ), is computed by

optimizing over all quantum states τ and is defined as:

RC(ρ) = min
τ

{
s ≥ 0

∣∣∣∣ρ+ sτ

1 + s
∈ I
}
, (3.16)

where the parameter s ≥ 0 ensures the mixing preserves the incoherent set I . For single-qubit states,

X states, and pure states, the robustness of coherence (3.16) coincides with the well-known ℓ1 -norm of

coherence given by Eq. (3.15). Further insights and comprehensive discussions on coherence measures

can be found in Ref. [23], offering readers a detailed exploration of various quantifiers, their properties,

and their applications in quantum information science.

Now, we turn our attention to the examination of majorization within the context of RTC. This

examination aligns with the discourse presented in Section 2.3, particularly concerning its implications

and relevance in the domain of quantum entanglement. The criterion of majorization serves as a

reliable indicator of the feasibility of transforming one coherent state into another under IOs. Drawing

motivation from the seminal work by Nielsen [53], Du et al. [137] successfully demonstrated that a

coherent state |ψ⟩ =
∑d−1

i=0 ψi |i⟩ with ψk ≥ ψk+1 > 0 can be deterministically transformed into

another coherent state |ϕ⟩ =
∑d−1

i=0 ϕi |i⟩ with ϕk ≥ ϕk+1 > 0 (for k = 0, 1, . . . , d − 2). This

transformation is feasible if and only if the coherence vector µ(ψ) = (ψ2
0, ψ

2
1, . . . , ψ

2
d−1)

T , as defined

in [168], is majorized by the coherence vector µ(ϕ) = (ϕ20, ϕ
2
1, . . . , ϕ

2
d−1)

T , denoted by µ(ψ) ≺ µ(ϕ).

Simply, the majorization condition is satisfied when the following inequalities hold for any k ∈ [0, d−2]:∑k
i=0 ψ

2
i ≤

∑k
i=0 ϕ

2
i , with the additional requirement of equality when k = d − 1 [137]. These

inequalities provide a quantitative measure of the majorization relationship between the coherence

vectors µ(ψ) and µ(ϕ), reflecting the extent to which one coherence vector dominates the other. The

detailed analysis of deterministic transformations involving coherent states, with a particular emphasis

on the concept of majorization, can be found in Ref. [139].

Emphasizing the orthonormality of basis states, coherence plays a pivotal role in quantum

advantage and enhancing QTs. Ongoing research aims to understand coherence, develop measures

for manipulation, and explore its operational significance. Future directions involve preserving and

controlling coherence, advancing coherence-based protocols, and uncovering foundational aspects.

Besides all this, investigating the effects of nonorthogonal basis states is important. The presence
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of nonorthogonal basis states necessitates the exploration of a novel resource theory in this context,

as addressed in Section 3.3.

3.3. Resource theory of superposition

The concepts of coherence and superposition share a conceptual similarity, but they exhibit distinct

characteristics in their resource-theoretic formulations. A crucial distinction arises in the treatment
of basis states. In the case of RTC [22], as we have discussed in Section 3.2, basis states are defined to

be orthogonal to each other. However, in the resource theory of superposition (RTS) [97], basis states

are not necessarily orthogonal, thereby introducing a significant departure from the RTC framework.

In the case of RTS, as introduced in Ref. [97], the set of free states is defined as the set of density

operators that do not exhibit any superposition. We use the notation SF to refer to this specific set.

Specifically, let Hd be a d-dimensional Hilbert space, and let {|ck⟩ : k = 0, 1, . . . , d − 1} be a set

of nonorthogonal (more generally, complete but not necessarily orthogonal), normalized, and linearly

independent basis vectors of Hd . Then, states defined as

ϱ =

d−1∑
k=0

ϱk |ck⟩⟨ck| , (3.17)

are called superposition-free, where ϱk ≥ 0 form a probability distribution, that is,
∑

k ϱk = 1. All

density operators which are not an element of SF —the set of superposition-free density operators—are

called superposition states and form the set of resource states. We use the notation SR to refer to

this specific set. On the other hand, a linear combination of {|ck⟩ : k = 0, 1, . . . , d − 1} gives us the

pure superposition states

|ψ⟩ =

d−1∑
k=0

ψk |ck⟩ , (3.18)

where the coefficients {ψk : k = 0, 1, . . . , d−1} are complex numbers. Let G be overlap matrix of basis

states{|ck⟩} , i.e., Gram matrix, with the elements Gij = ⟨ci|cj⟩ . Then the normalization condition

reads ⟨ψ|ψ⟩ =
∑d−1

i,j=0 ψ
∗
iGijψj = 1, where Gij are complex in general. A compact mathematical

summary for quantum states in RTS is then as follows:

{
SF = ϱ ∈ D(Hd) : ϱ =

d−1∑
k=0

ϱk |ck⟩⟨ck| , ϱk ≥ 0,

d−1∑
k=0

ϱk = 1

}
, (3.19)

{
SR = ς ∈ D(Hd) : ς /∈ SF

}
, (3.20)

where D(Hd) denotes the set of density operators on Hd .

Regarding the free operations within the RTS, the set of free operations, denoted by O , consists

of all quantum operations that can be applied to the free states without creating superposition.
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Ingredients Coherence Superposition

{|i⟩ : i = 0, 1, . . . , d− 1} {|ck⟩ : k = 0, 1, . . . , d− 1}
Basis states reference basis; normalized and linear independent;

complete and orthonormal complete, but not necessarily orthogonal

δ =
∑

i δi |i⟩ ⟨i| ∈ CF ϱ =
∑

k ϱk |ck⟩⟨ck| ∈ SF
Free states (F)

δi ∈ [0, 1] such that
∑

i δi = 1 ϱk ≥ 0, probability distribution

Resource states (R) any state σ /∈ CF (i.e., σ ∈ CR) any state ς /∈ SF (i.e., ς ∈ SR)

incoherent operation (IO); superposition-free
Free operations (O)

MIO, DIO, IO, SIO, PIO
(
KnϱK

†
n ∈ F for all ϱ ∈ F

)
Table 1: The comparison of the resource-theoretic formulations of coherence and superposition.
Emphasizing their contrasting characteristics, coherence is defined by the requirement of orthogonal
basis states within its resource theory, while the resource theory of superposition allows for the inclusion
of nonorthogonal basis states. By juxtaposing the essential elements of both theories, this table
summarizes the nuanced differences.

Specifically, a Kraus operator Kn is called superposition-free if KnϱK
†
n ∈ SF for all ϱ ∈ SF , and is

of the form [97]:

Kn =
∑
k

ck,n|cfn(k)⟩ ⟨c
⊥
k |, (3.21)

where ck,n are complex numbers, fn(k) are arbitrary index functions, and ⟨c⊥i |cj⟩ = ζiδij for ζi ∈ C ,

and the vectors |c⊥k ⟩ are normalized. Moreover, a quantum operation Φ(·) is called superposition-free

if it is trace-preserving and can be written such that Φ(ρ) =
∑

nKnρK
†
n , where all Kn are free. Upon

contrasting RTS with RTC, it becomes evident that RTC encompasses a more extensive spectrum of

free operations. This observation thereby mandates a more exhaustive examination of the realm of

free operations within the context of RTS [97].

Table 1 provides a brief overview of the main elements in the research areas of RTC and RTS.

It serves as a handy reference for summarizing and comparing the key aspects of these two branches

in the field of QRT. However, RTS fails to consider the overlaps that arise due to the quantum state

indistinguishability associated with the nonorthogonality of basis states. Pusuluk [169] demonstrated

that neglecting these overlaps can lead to conceptual inconsistencies, as they can give rise to quantum

correlations. To illustrate this point, we can revisit the free states ϱ defined in Eq. (3.17) by

considering a four-level system consisting of only two states |c1⟩ and |c2⟩ with a real-valued overlap

⟨c1|c2⟩ = s ∈ R . Let us focus on a specific partition of this system into two two-level subsystems A

and B , such that |ci⟩ := |ai⟩A ⊗ |bi⟩B with ⟨a1|a2⟩ = ⟨b1|b2⟩ =
√
s . In this scenario, the state ϱ is
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given by:

ϱ = p |a1⟩⟨a1| ⊗ |b1⟩⟨b1| + (1 − p) |a2⟩⟨a2| ⊗ |b2⟩⟨b2| , (3.22)

which exemplifies quantum-quantum states. Although it remains a superposition-free state in the

basis {|c1⟩, |c2⟩} , it possesses nonclassical correlations in the form of quantum discord [170–172].

A comprehensive resource theory (RT) of quantum discord has not yet been established in the

literature. However, we do know that incoherent operations cannot create discordant states like (3.22)

without depleting the local quantum coherences initially present in the subsystems [173]. In other

words, the superposition-free state under consideration maintains coherence in any orthogonal basis

acquired through local unitary transformations. Therefore, the current definition of superposition in

resource theory [97] does not sufficiently encompass quantum correlations as a subset �.

Ref. [169] introduced a unified framework called genuine superposition (GS) to address these

inconsistencies. The framework encompasses quantum superposition and quantum state indistin-

guishability, serving as the fundamental concept of nonclassicality from which quantum coherence

and correlations can arise. The mathematical representation of quantum states in resource theory of

genuine superposition can be summarized as follows:{
GSF = ϱ ∈ D(Hd) : ϱ =

d−1∑
k=0

ϱk |ck⟩ ⟨c⊥k | , ϱk ≥ 0,
d−1∑
k=0

ϱk = 1

}
, (3.23)

{
GSR = ς ∈ D(Hd) : ς /∈ GSF

}
. (3.24)

According to the given framework, a general density operator residing in Hd can be represented

as follows:

ρ =

d−1∑
i,j=0

ρij |ci⟩ ⟨c⊥j | . (3.25)

In this equation, the coefficients ρij = ⟨c⊥i |ρ̂|cj⟩ form a non-Hermitian but trace-one matrix. The

eigenvalues of this matrix are real. The elements along the diagonal of the matrix indicate the relative

weights of the basis states {|ci⟩} in the density operator ρ . These diagonal elements correspond to

the components of the vectors used to study majorization relations, which are employed to investigate

transformations between pure states in RTS [178].

In comparison to RTS, RTGS not only offers a more consistent framework for nonorthogonal

systems but also proves to be more practically advantageous. The quantification and manipulation of

nonclassicality in optical coherent states can be viewed as an application of RTS [97]. In the realm of

molecular electronic states, the significance of overlaps between nonorthogonal states becomes more

evident, as chemical bonding and related quantum chemical phenomena arise from these overlaps.

Aromaticity, which is one such phenomenon, lacks a universally accepted definition. However, a

recent proof-of-concept study [179] demonstrated that the amount of genuine superposition shared

�One may consider the existence of a similar issue in RTC. In Eq. (3.22), if we assume that ⟨a1|a2⟩ = 0 and
⟨b1|b2⟩ = s , then the state ϱ becomes an incoherent state with right-discord (a classical-quantum state). However, to
comprehensively investigate the relationship between coherence and discord, it becomes crucial to express the state in a
local orthogonal basis as in Refs. [174–177], ensuring that ϱ consistently contains coherence.
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between atomic orbitals effectively captures the aromaticity order of typical aromatic molecules and

aligns with existing measures of aromaticity. Conversely, RTS is incapable of providing the aromaticity

order of these molecules.

The presence of nonorthogonal basis states in the RTS gives rise to intriguing implications and

challenges. Unlike in RTC, where orthogonal basis states form a convenient reference for coherence

quantification and manipulation, the nonorthogonality of basis states in RTS requires the consideration

of alternative approaches. The nonorthogonality of basis states necessitates the development of new

mathematical formalisms and tools to capture and characterize superposition phenomena accurately.

Coherence measures and coherence manipulation techniques devised in the context of coherence theory

may not be directly applicable or meaningful within the realm of superposition theory due to the

absence of orthogonality constraints. In light of this, it becomes imperative to investigate potential

tools or methodologies that can effectively bridge the gap between coherence and superposition. The

Löwdin symmetric orthogonalization method stands out with remarkable attributes in this regard. A

succinct summary of this method can be outlined as follows:

Löwdin symmetric orthogonalization : Recall that {|c0⟩ , |c1⟩ , . . . , |cd−1⟩} is a set of non-

orthogonal, normalized, and linearly independent basis vectors of the d-dimensional Hilbert space Hd

[97]. With the help of the method of Löwdin symmetric orthogonalization [180, 181] (abbreviated by

LSO), we obtain an orthonormal basis set {|l0⟩ , |l1⟩ , . . . , |ld−1⟩} called as “Löwdin basis” [180]. Once

again, it is important to note that the RTC is inherently dependent on the choice of basis, allowing

for the selection of a reference basis aligned with the specific physics of the problem at hand. In this

context, we here adopt the Löwdin basis as our preferred basis, characterized by its completeness and

orthonormality.

Let X = {x0, . . . , xd−1} , with the labels X ∈ {C,L} and x ∈ {c, l} , represents a set of linearly

independent vectors. We can define a general (linear) transformation T such that L = TC . Note

that here and throughout, the vector xi is used as equivalent to |xi⟩ . The linear transformation T is

obtained from the overlap matrix G , with (i, j )-th matrix element given by Gij = ⟨ci|cj⟩ , satisfying

TT
† = G−1 . Since G is a positive Hermitian matrix, and therefore, have positive eigenvalues {λk} , it

can always be unitarily diagonalized by a unitary matrix U such that Gdiag = U †GU , from which we

can get G
1/2
diag = diag(

√
λ0, . . . ,

√
λd−1). By using this matrix, we define the matrix G1/2 = UG

1/2
diagU

†

and get G−1/2 = (G1/2)
−1

. Then LSO given by L = TC reads (L)j =
∑

i(G
−1/2)ji(C)i , where

(G−1/2)ji is the (j, i)-th matrix element of G−1/2 . Thus, we have

|lj⟩ =
d−1∑
i=0

(
G−1/2

)
ji
|ci⟩ , with j = 0, 1, . . . , d− 1. (3.26)

It is important to acknowledge that there exist infinitely many methods to transform a nonorthogonal

set into an orthonormal set. However, the distinguishing characteristic of the LSO method lies in

its ability to guarantee
∑

i ∥ci − li∥2 = min, where ∥ci − li∥2 ≡ ⟨ci − li|ci − li⟩ [180]. This unique

attribute ensures a smooth and minimal alteration from the nonorthogonal basis to the orthogonal

basis, preserving the inherent structure of the original vectors.

Importantly, in Ref. [182], it was demonstrated that the states with maximal superposition, also

known as golden states, can be obtained from the maximally coherent state using the LSO method.

These findings align with the comprehensive study presented by Şenyaşa and Torun [183], providing
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𝜓1

𝜓3𝜓2

Ω

|𝜓1〉: in terms of 
{ 𝑙0 , 𝑙1 , … , 𝑙𝑑−1 }

|𝜓2〉: in terms of 
{ 𝑐0 , 𝑐1 , … , 𝑐𝑑−1 }

|𝜓3〉: in terms of 
{|𝑐0

⊥〉, |𝑐1
⊥〉, … , |𝑐𝑑−1

⊥ 〉}

Figure 3: The Löwdin symmetric orthogonalization (LSO) method emerges as the approach that
establishes a connection between quantum states |ψ1⟩ , |ψ2⟩ , and |ψ3⟩ , all representing the same quan-
tum state |Ω⟩ but with respect to different bases: {|l0⟩ , |l1⟩ , . . . , |ld−1⟩} , {|c0⟩ , |c1⟩ , . . . , |cd−1⟩} , and
{|c⊥0 ⟩ , |c⊥1 ⟩ , . . . , |c⊥d−1⟩} , respectively. The method of LSO demonstrates the equivalence of maximally
coherent states and states with maximal superposition, emphasizing the structural similarities between
coherence and superposition (see Ref. [182]). This highlights the analytical utility of LSO in analyzing
resource states. The paper provides an illustrative example specifically focusing on two-dimensional
cases.

consistent results. As shown in [182], the method of LSO yields a significant result:

|Ω⟩ ≡
{
|ψ1⟩ ; |ψ2⟩ ; |ψ3⟩

}
=

{
1√
2

(|l0⟩ ∓ |l1⟩) ;
1√

2(1 ∓ s)
(|c0⟩ ∓ |c1⟩);

1√
2(1 ± s)

(|c⊥0 ⟩ ∓ |c⊥1 ⟩)

}
. (3.27)

The distinctive feature of the LSO method lies in its ability to establish a connection between

maximally coherent states and states with maximal superposition. Notably, in the case of two-

dimensional systems, maximally coherent states and states with maximal superposition are equivalent

under the LSO method. This equivalence serves to emphasize the underlying structural similarities

between coherence and superposition, demonstrating the analytical utility of LSO in the analysis of

resource states within the context of the RTC and RTS (see Figure 3).

Moreover, the nonorthogonal nature of basis states in the RTS leads to novel avenues for

exploration. Researchers must devise alternative strategies to quantify and manipulate superposition

resources effectively [178]. This requires the careful analysis of the unique properties and mathematical

structures arising from nonorthogonal basis states, paving the way for advancing our understanding

of the RTS and its implications in various QIP tasks. Moreover, in-depth exploration and research

in the field of RTS are crucial to establish a comprehensive understanding and facilitate meaningful

comparisons with studies conducted within the realm of RTC. To bridge the knowledge gap and

advance the understanding of quantum resource theories, additional research efforts are warranted to

delve into the intricacies of RTS and elucidate its distinctive features in relation to RTC.
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4. Nonequilibrium quantum thermodynamics

Quantum coherence and correlations are essential resources arising from the delocalization of quantum

information across space. Increasing attention is being given to understanding the thermodynamic

methods used to create and protect these quantities [184–190]. Moreover, they provide opportunities

to manipulate the transfer of thermodynamic energy [191–208]. Furthermore, both the delocalized

quantum information and heat flows can be mathematically described through quantum Onsager

relations, indicating a reciprocal relationship between these two different kinds of resources [209].

However, the studies focusing on the transformations between quantum information and energy have

mostly adopted an approach based on open quantum systems theory. Can we also investigate the same

relationship using an approach based on RT? For this purpose, we need to extend the majorization-

based RT framework to incorporate thermodynamics. In the following sections, we will outline how

to accomplish this from simpler to more complex quantum systems far away from equilibrium.

4.1. Resource theory of nonuniformity

To elucidate the duality between quantum information and disordered energy as resources [210], we

can begin by revisiting the theory of bipartite entanglement, which is limited by the transformation

of pure states. In a pure composite system, bipartite entanglement is directly related to the local

uncertainty in subsystems. Therefore, the entropy of one subsystem can be used as a measure of

entanglement. However, the notion of entropy is insufficient to determine whether one entangled pure

state can be transformed into another using LOCC. For this purpose, we need to use a stricter measure

of disorder, which is the majorization criterion discussed in Section 2.3.

The manifestation of majorization preorder is not limited to the transformation law of bipartite

entanglement facilitated by LOCC, as demonstrated in Refs. [211, 212]. There are other scenarios

worth considering, such as deterministic transformations from less entangled pure states to more

entangled pure states, which correspond to the inverse of LOCC transformations. In such cases,

increasing entanglement requires a concurrent increase in the local uncertainty of the subsystems.

This can only be achieved through a transformation that exhibits its impact on subsystems by means

of a doubly-stochastic matrix. This is where majorization comes into play. If a probability distribution

p⃗ can be transformed into another probability distribution q⃗ using a doubly-stochastic matrix B , then

p⃗ must majorize q⃗ , i.e., B p⃗ = q⃗ iff p⃗ ≻ q⃗ where ΣiBij = ΣjBij = 1 (Bij ≥ 0). In other words,

in order to increase the entanglement shared between subsystems, the final spectrum of each reduced

state should be majorized by its respective version before the transformation. LOCC assists the

opposite of this transformation. Therefore, the probability distribution that describes the subsystems

after the transformation should be majorized by its respective version before the transformation, i.e.,

LOCC : ρAB 7→ Λ(ρAB) = σAB iff q⃗ ≺ p⃗ such that ρA/B = diag(p⃗) and σA/B = diag(q⃗) .

Similarly, by working in the opposite scheme of bipartite entanglement theory, majorization char-

acterizes the possible state transformations in the RT of nonuniformity (or equivalently, purity [210]).

In this framework, the operations that can be performed without cost are limited to those that intro-

duce noise to the system or implement reversible changes. As athermality includes nonuniformity as

a subset (see Figure 1), this scenario can be seen as a specific case where agents can perform a set

of thermal operations at a given temperature. In such cases, all systems have trivial Hamiltonians,

which is equivalent to considering the infinite temperature limit. Consequently, the only state that is
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free under noisy operation (NOs) [24, 211, 212] is the maximally mixed state:

ϱ =
1

d
1, (4.1)

where d is the dimension of Hd and 1 is the identity operator acting on this Hilbert space. This

diagonal matrix corresponds to a uniform distribution of probabilities, reflecting an equilibrium state

of information. That is to say, ϱ = diag(u⃗) and u⃗ = {1/d}dj=1 . Any other states are considered

out-of-equilibrium, thereby making them valuable resource states within the context of NOs. The

degree to which these states deviate from uniformity is commonly referred to as their nonuniformity,

which serves as the primary resource of interest in this context.

Given a quantum system with a state ρ and a Hilbert space Hd , NOs are CPTP maps

E : L(Hd) → L(Hd) of the form

E(ρ) = tranc

[
U(ρ⊗ ϱanc)U

†
]
, (4.2)

where ϱanc = 1anc/danc is the informational equilibrium state of an ancillary system and U is an

arbitrary unitary operation acting on the joint system. We can interpret the operation described

in Eq. (4.2) using its decomposition into three steps as follows. An agent can couple the system of

interest with an ancillary system in equilibrium. Then, it can allow any interaction between these

two systems, effectively scrambling the information throughout the entire system while maintaining

the total entropy intact. And finally, the agent can detach the ancillary system from the system of
interest.

As mentioned earlier, a majorization-based investigation of LOCC-assisted bipartite entangle-

ment transformations is only feasible when the initial and target states are pure. Similarly, the pos-

sibility of state transformations under NOs can only be examined through majorization when these

states are mixed. If ρ = diag(p⃗) transforms to σ = diag(q⃗) using NOs, it is necessary and sufficient

that p⃗ ≻ q⃗ . These systems are referred to as isolated because they can solely exchange information

with their surroundings as shown in Figure 1. In conventional thermodynamics, entropy is the thermo-

dynamic quantity that appears in the inequality characterizing their state transformations. However,

the majorization criterion mentioned above imposes a more stringent constraint than conventional

thermodynamics by defining multiple inequalities based on the system’s size. These constraints apply

to thermodynamic state transformations of out-of-equilibrium, microscopic, and strongly correlated

systems. As we approach the thermodynamic limit, all these constraints converge to a single en-

tropic inequality that holds for uncorrelated equilibrium systems. This convergence occurring at the

thermodynamic limit can be demonstrated through nonuniformity monotones.

The order-α Rényi divergences, given by the equation

Sα[x⃗ || y⃗] =
sgn(α)

α− 1
log
∑
i

xαi y
1−α
i , (4.3)

serve as a comprehensive set of nonuniformity monotones. Here, α ≥ 0 and α ̸= 1. When q⃗ ≺ p⃗ ,

it follows that Sα[q⃗ || u⃗] ≤ Sα[p⃗ || u⃗] for any particular nonnegative value of α . However, the reverse

statement is not true. It is important to note that a single order-α Rényi divergence does not

establish the majorization preorder. For q⃗ ≺ p⃗ to hold, it is necessary that Sα[q⃗ || u⃗] ≤ Sα[p⃗ || u⃗]
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for all nonnegative values of α . On the other hand, when α approaches 1, the limit gives the

Kullback–Leibler divergence, which is sufficient to imply the transformation law in conventional

thermodynamics. S1[x⃗ || y⃗] , also known as relative entropy, is defined as
∑

i pi log pi/qi .

In this review, our focus has been solely on deterministic state transformations of single-

copy systems. For asymptotic, probabilistic, catalytic state transformations, and more, we refer the

reader to Ref. [24]. Additionally, we have not addressed all the nonuniformity monotones here. A

comprehensive summary of these monotones can also be found in tables 1, 2, and 3 in Ref. [24].

4.2. Resource theory of athermality

Now we can move on from isolated systems to closed systems that can exchange both information

and energy with their surroundings. According to conventional thermodynamics, the transition from

one equilibrium state to another in these systems is possible when there is a decrease in free energy.

The free energy, which can be expressed in the form of F = U − T S , is dependent on both the

entropy of the system and its average energy U ≡ tr[ρ Ĥ] . Here, Ĥ represents the Hamiltonian of the

system, and T is the temperature of the thermal environment with which it is in equilibrium. When

Ĥ vanishes or T goes to infinity, the contribution from the average energy can be neglected, and as

discussed in the previous section, entropy takes the place of free energy.

Based on our extensive examination of various resources illustrated in Figure 1, it has become

evident that the utilization of majorization-based criteria is imperative, rather than relying on entropy,

to establish a hierarchical order among states based on their resource contents. The fundamental mo-

tivation behind this choice stems from the necessity to transcend the thermodynamic limit, commonly

known as identical and independent distributions (iid), when investigating quantum systems. Unlike

classical systems, quantum systems cannot be replicated when their state is unknown. However, in the

derivation of thermodynamic laws, it is conventional to assume the availability of numerous identical

copies of a system. Therefore, when we surpass the iid limit, the following question arises: What can

we substitute for free energy? In what follows, we will explore how majorization can also provide

assistance in this context. However, prior to delving into that, let us first clarify what resources are

considered relevant for agents who have access to a thermal bath at a constant temperature, as well

as those that are not.

The only state that can be obtained freely through thermal operations (TOs) is the Gibbs state.

It is represented by the equation:

ϱS|β =
1

ZS|β
e−βĤS . (4.4)

Here, ĤS denotes the Hamiltonian of the system, ZS|β is the partition function, which is equal to

the trace of e−βĤS , and β = 1/kBT represents the inverse temperature of the environment, with kB
being the Boltzmann constant. ϱS|β is represented by a diagonal matrix that obeys the Boltzmann

distribution at inverse temperature β , i.e., ϱS|β = diag(γ⃗S|β) where γ⃗S|β = {e−βE
S
j /ZS|β} such

that ĤS =
∑

j E
S
j |j⟩⟨j| . Any states other than it, even Gibbs states at different temperatures,

are considered out-of-equilibrium. These nonequilibrium states are valuable as resource states in the

context of thermal operations (TOs). The degree to which these states differ from thermal equilibrium

at inverse temperature β is referred to as their athermality, which is the primary focus and resource

of interest in this context.
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Considering a quantum system with a state ρ and a Hamiltonian Ĥ , TOs are CPTP maps

T : L(H) → L(H′) that can be expressed as follows [27, 213]:{
ρ 7→ ρ′ = trA

[
U(ρ⊗ ϱB|β)U †

]
, Ĥ 7→ Ĥ ′ = trA

[
Ĥtot − ĤA

]}
. (4.5)

In this equation, ϱB|β represents the thermal equilibrium state of an ancillary system B , given by

e−βĤB/ZB|β , where ĤB is the Hamiltonian of system B and ZB|β is the corresponding partition

function. The unitary operation U acts on the joint system and preserves the total energy, i.e.,

[Ĥtot, U ] = 0, where Ĥtot = Ĥ⊗1B +1⊗ ĤB . The process explained in Eq. (4.5) can be broken down

into three steps. Initially, an agent connects the main system with an ancillary system B that is in

thermal equilibrium at temperature T . This enables the exchange of heat between the two systems

while keeping the total entropy and total energy unchanged. Subsequently, the agent traces outs an

arbitrary subsystem A from the entire setup.

There are alternative approaches to RT of athermality, such as thermal processes [50, 214–216]

that can be defined by two key properties. Firstly, the Gibbs state at temperature T should remain

unchanged under operations that do not require any work, i.e., T (ϱS|β) = ϱS|β . Secondly, the creation

of any quantum coherence in the energy basis cannot occur without cost, which is analogous to having

symmetry under time translations, i.e., T (e−iĤStρS e
iĤSt) = e−iĤSt T (ρS) eiĤSt . The question of

whether the set of states achievable through thermal processes aligns with the set of states achievable

by TOs remains an intriguing open question [217, 218]. A recent study [219] has shed light on this

matter, revealing that energy-incoherent states achievable by TOs can be closely approximated through

memory-assisted Markovian thermal processes, provided a sufficiently large memory is available. This

framework presents a promising avenue for advancing our understanding of the role played by memory

in diverse thermodynamic scenarios.

If both the initial and target states lack energetic coherence, we can determine the feasibility of

transforming the state ρ into σ through the utilization of a TO. Let us assume that ρ =
∑

j pj |j⟩ ⟨j|

and σ =
∑

j qj |j⟩ ⟨j| , where {ESj , |j⟩} forms the eigenspectrum of ĤS . In the presence of a TO at

inverse temperature β , which converts ρ into σ , there should be a relationship between the probability

distributions p⃗ and q⃗ given by GT p⃗ = q⃗ , where GT represents a Gibbs-stochastic matrix, a stochastic

map that preserves the Boltzmann distribution γ⃗S|β .

Now, we can extend the majorization criterion to include finite temperatures and nontrivial

Hamiltonians. This extension enables us to introduce a nonequilibrium generalization of free energy,

much like how the previous section enhanced our comprehension of entropy beyond iid limit. Let us

assume the existence of an embedding map, denoted as Γd , which is known as the Gibbs-rescaling

map. This map transforms the Boltzmann distribution γ⃗S|β with n rational elements into a uniform

distribution D , where (γS|β)j ≈ dj/D . Then, there exists a Gibbs-stochastic matrix GT that converts

p⃗ into q⃗ iff Γd(p⃗) majorizes Γd(q⃗). We can express this condition as the so-called thermomajorization

criterion [220] that exclusively involves p⃗ into q⃗ as follows:

k∑
i=1

p↓βi e
βES

i ≥
k∑
i=1

q↓βi eβE
S
i for all k = 1, 2, . . . , n, (4.6)
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where x↓βi is called β -ordering of xi defined by xπ(i) with π is the permutation ensuring xi+1 e
βES

i+1 ≥

xi e
βES

i .

The concept of thermomajorization introduces a set of inequalities that is the necessary and

sufficient condition for thermodynamic state transformations in various systems, including microscopic,

out-of-equilibrium, and highly correlated ones. In the presence of an ancillary system that returns

back into its original state with a probability close to unity, the application of the thermomajorization

criterion to the entire system establishes a family of second laws for the system of interest [65]. By

changing the energy levels of a system and facilitating thermalization between any two energy levels

within it, while utilizing an ancilla in a thermal state, it becomes possible to transform any state

into another state that adheres to these second laws [221]. Importantly, these second laws converge

to the conventional second law of thermodynamics in the iid limit, as well as in scenarios where the

ancillary system becomes correlated with the system of interest while still maintaining its own state

intact [222].

In the aforementioned family of second laws, free energy is replaced by athermality monotones

that are called α-free energies [220, 223–225] and are defined by

Fα(x⃗) = −kBT logZS|β + kBTSα[x⃗ || γ⃗S|β], (4.7)

where Sα are α-Rényi divergences defined in Eq. (4.3). As S1[x⃗ || γ⃗S|β] equals β U −S(x⃗) + logZS|β ,

we will end up with the conventional free energy, F = U − T S in the limit α goes to 1.

RT of thermality offers us a framework based on stochastic maps and majorization-based par-

tial orders, as summarized. Within this framework, there are many other concepts that we have

not addressed in this review but are useful in various different areas, such as relative thermaliza-

tion [226], conditioned thermal operations [227], relative submajorization [228], continuous thermo-

majorization [229–231], quantum majorization [50], and thermal cones [232, 233].

Thus far, our focus has been solely on the realm of RT of athermality in the single-shot limit.

For situations that involve asymptotic, probabilistic, catalytic state transformations, and other related

scenarios, we recommend referring to the pedagogical review written by Lostaglio [29]. Additionally,

we have assumed in this review that the heat baths accessible to agents have infinitely many degrees

of freedom. The alterations in state transformations achievable through NOs and TOs in the presence

of finite heat baths can be found in Ref. [234]

4.3. Resource theory of nonequilibrium

Finally, the range of quantum operations that agents can perform on a system can be expanded by

considering the exchange of various quantities, such as information, heat, particles, and more. Within

the framework of equilibrium thermodynamics, the state transformations of these open systems are

characterized by thermodynamic potentials, including the grand potential Φ, which can be expressed

as U −T S−
∑

j µjQ
(j) where µj corresponds to the chemical potential associated with the extensive

quantity Q(j) .

In a similar manner to our transition from RT of nonuniformity to RT of athermality in the

preceding section, we can further expand the scope of thermodynamic resource theories to encompass

domains beyond heat baths [235, 236]. In the case of an agent having access to generalized thermo-

dynamic baths, systems lacking resource value will be in the equilibrium state given by the density
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operator

ϱ = e−βĤ+
∑

j µjQ̂
(j)

/Z, (4.8)

where Z is the partition function. Free operations in this context will take the form{
ρ 7→ ρ′ = trA

[
U(ρ⊗ ϱB)U †

]
, Ĥ 7→ Ĥ ′ = trA

[
Ĥtot − ĤA

]
, Q̂(j) 7→ Q̂′(j) = trA

[
Q̂

(j)
tot − Q̂

(j)
A

]}
,

(4.9)

with the conditions
[
Ĥtot, U

]
=
[
Q̂

(j)
tot, U

]
= 0. We can consider these free operations, called equili-

brating operations, in a similar manner to noisy and thermal operations, through three consecutive

steps. The crucial aspect here is the preservation of the total amount of thermodynamic charges

during the interaction of the system with the ancillary system B .

To analyze general nonequilibrium states based on their resource contents, we can adopt the

same method that extends majorization to thermomajorization. When all thermodynamic charges

are commutative, the free states can be represented by diagonal matrices, simplifying the problem

to probability distributions. By identifying the stochastic matrix that preserves the equilibrium

probability distribution, we can then apply an embedding map to transform this stochastic matrix

into doubly stochastic matrices. This map allows us to generalize the concept of majorization to

equimajorization [235], which has previously been referred to as d-majorization [237] or mixing

distance [238, 239] in the literature.

The concept of equimajorization allows us to generalize nonequilibrium monotones. However, the

assumption of commutativity of thermodynamic charges, which is necessary for this generalization, is

challenged by quantum phenomena like uncertainty relations that demonstrate the noncommutativity

of observables. The impact of noncommuting charges on thermodynamic phenomena has become a

topic of interest at the intersection of quantum information theory and thermodynamics [240–242],

particularly in the field of many-body physics [243–245]. Recent advancements in this area have

unveiled significant consequences arising from the noncommutation of charges [236, 246, 247]. For

further exploration of this captivating subject, we recommend referring to the perspective provided in

Ref. [248].

5. Outlook

The framework of QRTs [1] allows for a systematic approach to investigate, quantify, and manipulate

distinct quantum resources. QRT can be used not only to analyze the limits and potential of existing

quantum devices but also to design quantum-enhanced devices and protocols. By understanding

the properties and transformations of quantum resources, researchers can harness these resources to

develop novel strategies that outperform classical counterparts or improve the performance of existing

quantum technologies. In this concise yet comprehensive review, we have initiated our discourse by

presenting the fundamental constituents that underpin the construction of any QRT. Subsequently, a

succinct introduction to the concept of majorization has been presented, highlighting its fundamental

significance in the QRTs expounded upon.

Then, within the second part of this review, we have presented a concise assessment of the

RTs of bipartite quantum entanglement [21], quantum coherence [22], and superposition [97]. The

majorization-based transformation procedures for all three RTs are well-established in the context

of pure initial and target resource states. However, extending these transformation methods to
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incorporate mixed states poses a significant and unsolved challenge. This stems from the inherent

difficulty in fully harnessing the mentioned resources within existing QTs without complete isolation

from their surrounding environment.

An ongoing challenge in the field of entanglement theory is finding a solution for handling mul-

tipartite entanglement within the RT framework. A comprehensive RT of multipartite entanglement

is crucial for scaling up quantum devices and enabling the utilization of entanglement as a resource

from micro- and nanoscales to meso- and macroscales. One of the primary complexities involved in

tackling this issue is the existence of various classes of genuine entanglement in the multipartite regime.

To illustrate, in tripartite entanglement, GHZ-type and W-type entanglements should be regarded as

separate resources (i.e., contain different types of entanglement), each governed by distinct constraints

imposed on LOCCs, resulting in different sets of free operations.

Although quantum coherence is a special case of quantum superposition as shown in Figure 1,

their unification within the framework of RT remains an active area of research. While coherence
has been extensively studied and reviewed [23], the study of superposition [97] is relatively new and

offers numerous opportunities for further investigation. One significant challenge in quantifying and

manipulating superposition as a resource arises from the complexity introduced by nonorthogonality.

By adopting the biorthogonality framework introduced in Ref. [169] and exploring the relationship

between coherence and superposition as in Ref. [182], we can strive towards a complete RT of

nonclassicality that treats superposition, coherence, and correlations on equal footing. Within this

context, investigating superposition within the resource-theoretic framework represents a promising

frontier, with the potential to reveal unique characteristics and practical implications in the field of

QTs. Section 3.3 aims to provide a rationale for discussing the previously introduced RTs and outlines

potential avenues for future research on quantum superposition.

In the final part of this review, we have delved into the RTs of nonequilibrium thermodynamics,

drawing structural parallelism with the RTs of quantum information discussed earlier. For instance,

just as the nonorthogonality of states leads to a complexity in the RTs of quantum information,

the noncommutativity of observables similarly gives rise to a comparable complexity. Additionally,

the majorization-based transformation procedures we have summarized were limited to pure states in

Section 3, while they were restricted to mixed states in Section 4. However, significant efforts have been

dedicated to addressing these limitations in the RTs of nonequilibrium thermodynamics. Particularly,

extensive research has been conducted in the literature on the changes in energetic coherence under

thermal operations, exploring the realm of the RT of athermality [50, 214–216].

In the case of nondegenerate energy levels, the energetic populations and coherences vary

independently under thermal operations. However, in degenerate systems, interconversions between

populations and coherence can take place. Coherence types that enable such interconversions are

classified as “heat-exchange” [194, 199, 209], “internal” [204], or “horizontal” [197, 206, 208] in the field

of open quantum system dynamics theory. Extensive research has been conducted to investigate the

role of this specific coherence type in thermal processes using the master equation. In the framework

of RT, the same coherence type is referred to as mode-zero coherence [29], but its potential has not

been adequately examined through majorization-based investigations in the existing literature.

To conclude, quantum protocols that utilize multiple types of resources simultaneously have

the potential to demonstrate superior performance compared to those relying on a uniform quantum

fuel [19]. With this motivation in mind, the objective of this review is to highlight the structural

similarities among various quantum resources in RTs. As a result, we were unable to provide an
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exhaustive literature summary for any specific QRT. Instead, our aim has been to direct the reader

toward other reviews in the field to the best of our ability. We expect that this compendious review will

contribute to unveiling the commonalities among various RTs, thereby enhancing our comprehension

of genuine quantum phenomena in technology.
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[180] P. Löwdin, “On the non-orthogonality problem connected with the use of atomic wave functions in the

theory of molecules and crystals,” Journal of Chemical Physics 18 (1950) 365.

[181] L. Piela, “Appendix j - orthogonalization,” in Ideas of Quantum Chemistry, Elsevier (2014).
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[183] H.T. Şenyaşa and G. Torun, “Golden states in resource theory of superposition,” Physical Review A 105

(2022) 042410.

[184] J.B. Brask, G. Haack, N. Brunner and M. Huber, “Autonomous quantum thermal machine for generating

steady-state entanglement,” New Journal of Physics 17 (2015) 113029.

[185] M. Huber, M. Perarnau-Llobet, K.V. Hovhannisyan, P. Skrzypczyk, C. Klöckl, N. Brunner et al.,
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