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Abstract: Gas discharge plasmas are low-temperature nonequilibrium plasmas that have a wide range of

scientific and technological applications. The particle-in-cell/Monte Carlo collision (PIC/MCC) method is a

reliable approach for numerical analyses and simulations of such plasmas. In this study, we first provide a

detailed description of the basics of this method. We then verify the programme code that we developed

in Fortran by benchmarking the code against a widely referred reference study simulating a radiofrequency

capacitively coupled plasma (RFCCP) in helium for various discharge conditions. We show that the results of

the present study are in good agreement with that of the reference benchmark study. We also demonstrate that

although PIC/MCC is a computationally demanding method, it is still possible to conduct some one-dimensional

plasma simulations with standard personal computers within hours, thanks to recent advancements in computing

technologies. More rigorous and especially high-dimensional problems, however, require acceleration and

parallelization strategies.

Keywords: Kinetic plasma simulation, particle-in-cell/Monte Carlo collision, radiofrequency capacitively cou-

pled plasma, benchmark

1. Introduction

Modelling and simulation are essential elements in the studies in applied sciences, and plasma science

is not an exception to that. Among the various methods developed for a wide variety of plasma

types, particle-based simulation techniques stand out, especially in the study of low-temperature and

nonequilibrium plasmas. The particle-in-cell (PIC) method, specifically, has been used for more than

half a century for various plasma simulations since its first appearance in the late 1950s and the

beginning of the 1960s by Buneman [1] and Dawson [2]. In the late 1960s, the Monte Carlo collision

(MCC) method was already appended to the PIC for handling collisional events [3–5]. Since then,

the PIC/MCC method has been used in the analysis of numerous plasma phenomena, such as plasma

thrusters [6, 7] and impurity identification in gases [8].

Radiofrequency capacitively coupled plasma (RFCCP) is a common type of low-pressure gas

discharge. In this type of discharge, the plasma is sustained by coupling the electrical power to the

plasma directly through electrodes. Capacitive discharges are thoroughly investigated in the literature

*Correspondence: iarda@thk.edu.tr
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[9]. RFCCP has various application areas, such as thin film deposition, etching, microelectronics, and

space propulsion systems [10, 11]. PIC/MCC has recently gained popularity among several models

and simulation methods that have been developed for RFCCP discharges over the years [12].

PIC/MCC is a stochastic method that is implemented through computer simulations. Verifying

the results of any computer simulation is an indispensable stage. Although the best way of this

verification is to compare the simulation results with empirical outcomes, experimental results or even

the experiments themselves are not always accessible. Benchmarking the developed programme codes

with other independently developed codes is an appropriate alternative at this point. Actually, it

would not be an overstatement to suggest that benchmarking a programme implementation of any

discharge model is a minimum requirement [13].

In the present study, we describe the fundamentals of the PIC/MCC method and utilize this

method in a 1d3v electrostatic programme code in Fortran. The main purposes of this paper are to

provide a detailed introduction of the PIC/MCC method and verify the developed code through a

benchmark study by Turner et al. [14]. This is a well-chosen benchmark study for a couple of reasons.

First, the discharge conditions in that study were determined so that they could be associated with

the experimental studies of Godyak et al. [15]. Second, their study has similar characteristics to an

earlier benchmark study by Surendra [16], yet has more consistent results. Finally, they examined the

effects of various numerical parameters to specify any remaining ambiguity in the benchmark data

and shared all outcomes in an easy-to-access electronic supplement*.

The layout of the present study is as follows: The details of the PIC/MCC method and

benchmark implementation are given in Section 2. In Section 3, the results of the present and the

reference benchmark studies are compared to verify the developed programme code. Finally, the study

is concluded with a brief summary in Section 4.

2. Methodology and implementation

2.1. PIC/MCC method

Hockney and Eastwood [17] identified the PIC as a particle-mesh (PM) type method. The fundamental

philosophy behind this methodology is that each particle is followed in a continuous space, and in the

meantime, field quantities such as densities, potentials, etc., are approximated on the mesh points

of a spatial mesh. And thence, the electromagnetic forces on each particle can be calculated using

the discretised field values on the mesh points. The most significant achievement of this approach is

that consideration of the mutual interactions of each particle turns out to be unnecessary. The other

principal part of the method is the concept of superparticles. Each particle in the numerical method

represents many (typically thousands of) real physical particles. These are the essence of the PIC

method that makes plasma simulations even possible, as it would be a hopeless endeavour to follow

millions of trillions of particles and account for their mutual interactions with one another.

The plasma-chemical processes (i.e. collision events), on the other hand, are taken into account

stochastically through the Monte Carlo collision (MCC) method. Whether a particle experiences a

collision event and what type of collision event is to take place are determined through comparing

random numbers with the probabilities obtained from collision frequencies. The basic steps of the

electrostatic PIC/MCC procedure can be summarized in a main algorithm given in Figure 1.

*The supplementary material is available at https://doi.org/10.1063/1.4775084.
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Figure 1: The cycle of the PIC/MCC procedure for the electrostatic case.

A prerequisite to the method is the construction of a spatial mesh. A one-dimensional grid

with equal lengths of cell spacings is utilized for the construction of the spatial mesh in this study.

Numbering of the cell points starts with 0; hence, the length of each cell spacing becomes ∆x =

L/(N −1) for a grid of length L with a total number of N grid points. Subsequently, charge densities

are assigned to grid points depending on the positions of particles. When this assignment is done

according to the first-order accuracy, it amounts to the linear interpolation of the number densities

to the grid points, and the particles effectively become triangular-shaped clouds according to the grid

points. This approach is either called the particle-in-cell (PIC), by following the former viewpoint [18],

or the cloud-in-cell (CIC) model, by following the latter viewpoint [19]. Let Xj and xi be the positions

of the j -th grid point and i-th particle. Then, for a particle with position xi , where Xj ≤ xi ≤ Xj+1 ,

the number density is distributed on j -th and (j + 1)-th grid points as follows [12]:

δnj =
[
(j + 1)− xi

∆x

] W

A∆x
, (2.1)

δnj+1 =
( xi
∆x

− j
) W

A∆x
. (2.2)

Here, W is the weight that gives the number of real physical particles constituting each superparticle

and A is the cross-sectional area of the discharge region. Note that in the case of a one-dimensional

simulation, this area is only used to establish the relation between superparticles and number density

of real particles. Its value and unit are arbitrary and can be set to, for instance, A = 1 cm2 [12].
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δ notation in Eqs. (2.1) and (2.2) points out the contribution of each individual superparticle. For

a total of M superparticles of particle species s which contribute the grid point, say, j , the total

number density of the corresponding species on the specified grid point is simply obtained by adding

the contribution of each superparticle:

nj,s =
M∑
k=1

(δnj,s)k . (2.3)

Consequently, the total charge density on j -th grid point becomes

ρj =
∑
s

qsnj,s, (2.4)

where qs is the charge of species s .

Charged particles both modify and are affected by potential and electric field distributions within

the discharge region. To resolve this complex situation, Poisson’s equation (∇2φ = −ρ/ε0 ) needs to

be coupled to the system. To this end, it is discretized with the second-order central difference scheme,

as follows:

φj−1 − 2φj + φj+1

∆x2
= −ρj

ε0
. (2.5)

Eq. (2.5) is applied for internal nodes of the grid, whereas potentials on the electrodes are included

to the system as boundary conditions. Along with the boundary conditions, Eq. (2.5) constitutes a

tridiagonal system of equations in its matrix form and the Thomas algorithm is utilized for the solution

of this system due to its efficiency. Subsequently, electric field values at grid points are obtained from

the relation E = −∇φ . Applying the second-order central difference scheme on this relation yields

Ej =
φj−1 − φj+1

2∆x
. (2.6)

Grid points standing on the boundaries, however, require special treatment [12]:

E0 =
φ0 − φ1

∆x
− ρ0∆x

2ε0
, (2.7)

EN−1 =
φN−2 − φN−1

∆x
+

ρN−1∆x

2ε0
. (2.8)

Having obtained the electric field values at grid points, it is then possible to calculate electro-

magnetic forces through the Lorentz force law: F = qE (for the electrostatic case). It is important to

notice, however, that calculation of forces on the particles requires electric field values at the positions

of particles. Thus, electric field values calculated at grid points should be interpolated back to particle

positions. In order to avoid the development of a self-force while performing this back interpolation,

Birdsall and Langdon [18] advised using the same order interpolation scheme as that used in distribut-

ing the particle densities to grid points. Consequently, for a particle of charge q at position xi that

is situated within grid points j and j + 1, the electrostatic force is given by Fi = qEi , where
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Ei = Ej
Xj+1 − xi

∆x
+ Ej+1

xi −Xj

∆x
. (2.9)

After the forces on particles are determined, the equations of motion can be solved to update

particle positions and velocities as a result of their response to the fields. The explicit leapfrog

integration method [17] is an appropriate option due to its attractive features, such as its simplicity,

second-order accuracy, and symplectic nature. In this method, velocity updating time steps are not

synchronized with those of the positions. Rather, the positions are calculated at integer time steps,

whereas the velocities are calculated at half integer time steps, lagging a half step size:

vk+1/2 = vk−1/2 +
q

m
Ek∆t, (2.10)

xk+1 = xk + vk+1/2∆t. (2.11)

Note that the superscripts in Eqs. (2.10) and (2.11) show time steps. Note also that when necessary,

the velocity can be advanced through the following equation for another half step size to yield integer

time step value:

vk+1 = vk+1/2 +
qEk+1

m

∆t

2
. (2.12)

While moving particles for a time step size, it is possible that some particles may reach the

discharge boundaries. It is important to identify those particles and to handle their interactions with

boundary surfaces. Those interactions may occur in a variety of ways: particles may be absorbed

by or reflected off of the boundary surfaces, or they may rip off new (secondary) particles from the

surfaces. Reflection and secondary particle emission processes are stochastically included through

relevant coefficient values that depend on the material of boundary surfaces and they may play

significant roles on various discharge characteristics depending on the discharge conditions. Hence, it is

important to perceive the extent of the study and include necessary boundary processes correctly. The

effects of boundary processes for various discharge characteristics have been studied in the literature,

e.g., [20–24].

The final step of the main algorithm is handling collisions through the Monte Carlo collision

method. MCC is a stochastic method based on comparing random numbers with the probabilities

of events to determine whether they occur. To determine, for instance, whether a particle is to

experience a collision event during a time step ∆t , a random number RU
0−1 is compared with the

collision probability of the particle [12]:

P∆t = 1− exp [−ngvrσ (vr)∆t] . (2.13)

Note that the notation RU
0−1 indicates that the random number is drawn from a uniform distribution

on the interval [0, 1). Note also that in Eq. (2.13), ng is the number density of neutral background

gas, vr is the relative speed of incident particle with respect to the target particle, and σ is the cross

section of the collision event. If the value of this probability is greater than RU
0−1 , a collision event

takes place for the particle under investigation. It is important to notice from Eq. (2.13) that the time
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step size directly affects the value of collision probability. It is also important to emphasize that any

particle can experience at most one collision event per time step in MCC method. This introduces

an error in handling the collisions, depending on the number of missed collisions. Hence, the choice

of time step size, ∆t , has a crucial role in the reliability of simulations. Vahedi and Surendra [25]

advised that ∆t shall satisfy the following equation:

ngvrσ (vr)∆t ≤ 0.1 (2.14)

This equivalently means that the collision probability is not to exceed 0.095. Donko et al. [12],

on the other hand, suggested to keep the collision probability below about 0.05. The stability and

accuracy criteria including the time step size of the PIC/MCC method have been recently revisited

and investigated thoroughly in [26].

In the classical MCC method, the collision checks are conducted for all the particles one by one.

During the checks, for those particles that are to undergo a collision event, the type of collision is

also determined by comparing a random number with the probabilities of each collision event. The

probability of, for instance, j -th collisional process is calculated from [12]

Pj =
σj
σT

, (2.15)

where σj is the cross section for j -th collisional process and σT is the total cross section for all

collision types. Considering a total number of N collisional processes, the interval [0, 1) is divided

into N segments, of length Pj for the j -th process. The ordering of these processes follows the

ascending order of the corresponding events’ threshold energies. Then, saying that a random number

RU
0−1 belongs to the first interval means that it satisfies the inequality 0 < RU

0−1 ≤ P1 . Similarly, if

RU
0−1 belongs to the second interval, then P1 < RU

0−1 ≤ P1 + P2 , and so on. Hence, if the random

number has a value that satisfies

l−1∑
k=1

Pk < RU
0−1 ≤

l∑
k=1

Pk, (2.16)

then the l -th collisional process occurs. A visual representation of this procedure is given in Figure 2.

Collision handling procedure includes determining energy transfers between colliding partners,

the details of which depend on the type of collision event, as well as calculating the velocities of

particles after the collision. The latter involves assessing the deflection angles and magnitudes of the

velocities of scattered particles. The deflection angles are comprised of two components: the scattering

angle χ , which denotes the angle between the velocity vectors of the incoming particle before and after

the scattering event, and the azimuth angle η , which represents the angle between the postcollisional

velocity and the normal to the precollisional velocity. In our convention, assuming the precollisional

velocity is oriented in the east direction, η is measured from the north direction. It is important to

note that the collisions and deflection angles are resolved in the centre of mass (CoM) frame. Hence,

the velocities of particles should be written in the CoM frame when handling the collisions. From the

definition of CoM, the velocity of CoM for a system of two colliding particles that consists of constant

masses is given by
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Figure 2: Intervals of collisional processes. Pj is the probability for the j -th process, calculated
from Eq. (2.15). The processes are arranged in ascending order of threshold energies, from lowest to
highest. If the random number RU

0−1 falls into the shown interval, then the l -th collisional process
occurs.

vCoM =
mpvp +mtvt

mp +mt
, (2.17)

where mp , mt , vp , and vt are the masses and velocities of projectile and target particle, respectively.

It is important to note that in this study, only electron-neutral and ion-neutral collisions are considered.

Thus, the primary particles being followed are either electrons or ions, and the target particles are

the neutral background atoms or molecules. Eq. (2.17) can be written for postcollisional velocities,

as well:

v′
CoM =

mpv
′
p +mtv

′
t

mp +mt
, (2.18)

where the primes indicate the velocities of the colliding particles after the collision. Eq. (2.18) can be

solved for v′
p to have

v′
p =

(
1 +

mt

mp

)
v′
CoM − mt

mp

(
v′
p − v′

r

)
,

where v′
r ≡ v′

p − v′
t is the relative velocity of colliding particles after the collision. Further rearrange-

ments yield

v′
p = v′

CoM +
mt

mp +mt
v′
r. (2.19)

Note that since the total momentum is conserved and we consider a closed system, the velocity of the

CoM does not change after the collision, i.e. v′
CoM = vCoM and hence

v′
p = vCoM +

mt

mp +mt
v′
r. (2.20)
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Similarly, solving Eq. (2.18) for v′
t with v′

CoM = vCoM yields,

v′
t = vCoM − mp

mp +mt
v′
r. (2.21)

Note that in the case of electron-neutral collisions, neutral particles can be assumed to be stationary

with respect to electrons due to the sufficiently low electron-to-neutral mass ratio. This assumption

is called the cold gas approximation [12]. In this case, it is reasonable to assume that vt = 0, and

hence the relative velocity simply equates to the electron velocity, vr = ve . In ion-neutral collisions,

however, this is not a valid assumption as the ions and neutral particles are comparable in mass and

thus in momentum.

The procedures for determining the deflection angles and the postcollision relative velocity are

distinct for elastic and inelastic collisions. Furthermore, various approaches might be used to calculate

the scattering angle χ depending on whether an isotropic or anisotropic scattering case is considered

for a specific collision type. When a model or a set of experimental data exists for the differential

cross section as a function of both energy and the scattering angle, one can consider the anisotropic

scattering case� and obtain the scattering angle χ through the relation [29]∫ χ
0 σ (ε, χ′) sinχ′dχ′∫ π
0 σ (ε, χ′) sinχ′dχ′ = RU

0−1. (2.22)

For instance, in [27], an analytical expression is given for an anisotropic scattering case in an attempt

to correct an erroneous approach that had been given in a previous study in [28]. In the present study,

however, the isotropic scattering case is considered. For elastic collisions, the scattering angle χ and

the azimuth angle η are calculated through Eqs. (2.23) and (2.24) [29], respectively:

χ = cos−1
(
1− 2RU

0−1

)
, (2.23)

η = 2πRU
0−1. (2.24)

The magnitude of the relative velocity does not change in the case of an elastic collision, hence vr
′ = vr .

For electron-neutral inelastic collisions, on the other hand, the magnitude of the relative velocity

is not constant, and its change is calculated based on the change in the kinetic energy of the system of

colliding particles. In an inelastic collision case for which the threshold energy of the chemical process

is εth. , the kinetic energy of the system of colliding particles after the collision event is given by

ε′ = ε− εth.. (2.25)

It is important to recall that the collision events are handled in the CoM frame. Hence, the energies

in Eq. (2.25) are calculated for the reduced system of the colliding particles:

ε =
1

2
µ(vr)

2, (2.26)

�Note that in the case of an anisotropic scattering, a transformation of the velocity vector of the incoming particle is
necessary prior to and after the collision event. A detailed explanation is given in [12].
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ε′ =
1

2
µ(vr

′)2, (2.27)

where µ is the reduced mass of the system of colliding particles. In an excitation collision, the

deflection angles are determined from Eqs. (2.23) and (2.24), whereas in an ionization collision, they

are obtained through [12]

χsc. = cos−1

(√
εsc.
ε′

)
, ηsc. = 2πRU

0−1, (2.28)

and

χej. = cos−1

(√
εej.
ε′

)
, ηej. = ηsc. + π, (2.29)

where the subscripts sc. and ej. indicate scattered and ejected electrons after the collision event,

respectively. This requires a choice of sharing the remaining energy ε′ between the scattered and

ejected electrons. This may be done according to various formulations obtained from experimental

data.

For cases involving large numbers of superparticles, the classical MCC method can be rather

time-consuming as it involves the computationally expensive operations of calculating the kinetic

energies, collision probabilities, postcollision velocities, and angles of each particle participating in

the collision event. In an attempt to resolve this, the null collision method is used. This method is

based on the idea of obtaining a constant total collision frequency by the addition of a new collisional

process (null collision) and was first introduced by Skullerud [5] for the problem of determining the

free times between collisions for ion motion in a gas that is subjected to a constant electric field.

Since then, the method has been adopted and further improved in various PIC/MCC and swarm

studies (e.g., [25, 29–33]) and has become a standard method for improving the performance of the

codes implemented for those studies. In the present study, the procedure given in [25] is followed to

implement the null collision method. The constant total collision frequency is obtained through

νc = max (ngσT v) = ng max (σT v) , (2.30)

since the background gas density is assumed to be spatially and temporally uniform. The main

strength of the method comes from the fact that the check for whether a particle collides in each time

interval is performed for only a subset of all particles rather than all of them. The number of particles

to be checked for collision is determined by multiplying the total number of particles by the factor

Pnull = 1− exp (−νc∆t) . (2.31)

Those particles are randomly chosen among all particles without duplicates; i.e. there are no particles

that are checked more than once whether they participate in collisions, and hence any particle can only

experience a collision once at most within one time step. Once those particles are chosen, a random

number is compared with fractional collision frequencies of each collision type and the constant collision

frequency. Let
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qi ≡
∑i

k=1 νk
νc

, (2.32)

where the subscript i designates the type of collision. If the relation qi−1 < RU
0−1 ⩽ qi holds for the

random number RU
0−1 , then the i-th collision event occurs, where the ordering of collision events is

done according to the threshold energies of collision types in an ascending manner. For a total of M

collision types, if

∑M
k=1 νk
νc

< RU
0−1, (2.33)

then the null collision occurs. In that case, no real collision takes place and the iteration continues

with the next particle. The null collision method imposes an additional computational load to select

colliding particles randomly and in a nonduplicated manner. If the value of Pnull is sufficiently low,

however, reduction in the number of the floating-point operations compared to the classical MCC

method can be rather high.

2.2. Benchmark implementation

Simulations are carried out with a 1d3v electrostatic code that was developed by authors according to

well-known algorithms [12, 25, 29]. The code is written serially in Fortran. For the validation of the

code, a relatively recent and widely referred benchmark study by Turner et al. [14] is utilized. They

developed their benchmark study for low-pressure capacitive discharge in helium, at a sinusoidally

varying voltage of frequency 13.56MHz, so that simulations would be associated with the experiments

of Godyak et al. [15]. They introduced a benchmark problem with well-defined physical and numerical

conditions for various cases and applied five independently established codes, some developed in

different programming languages and even with different architectures. The conditions, in this study,

are taken to be identical in terms of physical and computational parameters. Some basic parameters of

the benchmark cases are given in Table 1. In all simulation cases, data collection for these parameters

is conducted for the last 32 RF cycles of the simulation.

Table 1: Basic parameters of benchmark in [14].

Parameter Symbol [unit] Case 1 Case 2 Case 3 Case 4

Discharge gap L [cm] 6.7 6.7 6.7 6.7

Background gas pressure p [Torr] 0.03 0.1 0.3 1

Background gas temperature T [K] 300 300 300 300

Discharge voltage V [V] 450 200 150 120

Simulation time t [s] 1280/f 5120/f 5120/f 15360/f

Cell size ∆x [m] L/128 L/256 L/512 L/512

Time step size ∆t [s] (400f)−1 (800f)−1 (1600f)−1 (3200f)−1

Particle weight W 26172 52344 52344 78516
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Following the benchmark requirements, the plasma-chemical processes included in this study

are given in Table 2. Cross section data are taken from the LXCat data centre� and supplied to the

code as look-up tables. As in the benchmark study [14], the Biagi 7.1 and Phelps data sets are used

for electron-neutral and ion-neutral collisions, respectively. These tables include cross section data

only for some discrete energy values. Cross section values for energies other than those are calculated

through linear interpolation.

Table 2: Plasma-chemical processes included in the present study.

Process Reaction Threshold energy (eV)

Elastic scattering e− +He → He+ e− –

Excitation (triplet) e− +He → He∗(23S1) + e− 19.82

Excitation (singlet) e− +He → He∗(21S0) + e− 20.61

Ionization e− +He → He+ + e− + e− 24.587

Isotropic elastic scattering He+ +He → He+ +He –

Backward elastic scattering He+ +He → He+He+ –

The Biagi 7.1 data set includes one cross section set for the elastic momentum transfer process,

two sets for the excitation (singlet and triplet) process, and one set for the ionization process, all of

which suppose that the collisions result in isotropic scattering in the CoM frame. The Phelps data

set, on the other hand, contains two sets of collisional processes: isotropic scattering and backward

scattering, which are the components for an approximation of anisotropic scattering according to

Phelps’ proposal [34].

Finally, note that, in the case of an electron-neutral ionization collision, the residual energy is

shared in half by the scattered and ejected (i.e. ripped off from neutral He atoms) electrons, in parallel

with the benchmark study in [14].

3. Results and discussion

The code is implemented on a PC with Intel Core i7-1065G7 CPU processor via Intel IFORT compiler

for cases given in Table 1. Run times of simulations for each case are given in Table 3. It is seen that

despite the computationally intensive nature of the PIC/MCC method, it may be possible to conduct

simulations with a standard personal computer on some occasions. Case 4, on the other hand, reflects

how computationally demanding the method is, especially in more complex cases, and that the use of

acceleration techniques may become inevitable.

The relative errors (in percent) of basic physical parameters as compared to the corresponding

values from the reference study in [14] are demonstrated in Table 4. Note that ni is the value of ion

density at the middle of the discharge region, Se and Si are the line integrals of electrical power of

electrons and ions, and Ji is the ion current density at the boundaries (i.e. electrodes).

Table 5 displays the relative errors of some numerical parameters in comparison to results from

[14]. Time-averaged values of electron number density and mean electron energy in the middle of the

�LXCat is an open-access website that contains useful data for low-temperature plasma modelling. The website can
be accessed through https://us.lxcat.net/home/.
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Table 3: Total number of simulation time steps and run times (in minutes) of each simulation case
in the present study.

Case Simulation time steps Run time (min)

1 512, 000 14

2 4, 096, 000 342

3 8, 192, 000 1716

4 49, 152, 000 14521

Table 4: Relative errors of some basic physical parameters of the discharge in comparison to the
reference values given in [14]. The values of the ion density ni and the electron temperature Te are
evaluated at the centre of the discharge region. Se and Si are the line integrals of electrical power of
electrons and ions through the discharge region, respectively. Ion currents Ji are values calculated at
either of the two electrodes.

Parameter Case 1 (%) Case 2 (%) Case 3 (%) Case 4 (%)

ni 3.570 0.483 < 10−3 0.778

kBTe 3.630 1.070 0.506 1.370

Se 2.620 0.581 0.939 2.070

Si 2.870 2.930 2.810 3.690

Ji 0.457 < 10−3 0.513 1.080

Table 5: Relative errors of some basic numerical parameters of the discharge in comparison to the
reference values given in [14]. The time-averaged values are taken at the centre of the discharge, except
for NP which is the total number of superparticles in the entire discharge region.

Parameter Case 1 (%) Case 2 (%) Case 3 (%) Case 4 (%)

ωp∆t < 10−3 < 10−3 0.909 10−3

λD/∆x 1.340 0.935 < 10−3 0.935

NP 2.820 < 10−3 < 10−3 0.912

discharge region are used to calculate the plasma frequency and the Debye length.

In Figure 3, ion number densities are compared with the reference study [14] results. The

reference data sets actually correspond to one standard deviation of fluctuations around equilibrium

values after the stationary state is achieved in an extended simulation of one of the codes involved in

the benchmark study in [14]. These data sets can be found in the electronic supplements§ of that study.

The curves illustrated in Figure 3 suggest a good agreement in ion density results. In order to provide

a more convincing claim of this agreement, the maximum relative errors in ion densities are calculated

§The supplementary material of [14] is available at https://doi.org/10.1063/1.4775084.
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Figure 3: Distributions of ion number densities in comparison to results from [14]. The reference data
sets represent one standard deviation of fluctuations around equilibrium values after the stationary
state is achieved in an extended simulation of one of the codes involved in the benchmark study in
[14].

by considering the reference data from [14] as true values of ion densities. These quantitative results

are given in Table 6. It is seen that the divergence in the agreement of results tend to grow from case

1, where the maximum error is 2.48%, to case 4, where the maximum error increases to 4.68%.

Table 6: The maximum relative errors in ion number density distributions of the present study as
compared to the reference values from [14].

Maximum relative errors (in %)

of ion number densities

Case 1 2.48

Case 2 3.45

Case 3 4.64

Case 4 4.68

Figure 4 shows comparisons of period-averaged values of the ionization source term Rion. (top

left), power density of electrons Pe (top right), and power density of ions Pi (bottom left), respectively.

Satisfying agreements are observed in these figures as well. In each of these figures, it is obvious that

ionization source and power densities tend to concentrate in sheath regions as the pressure is increased.
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Figure 4: Temporally averaged ionization source terms (top left), electron power densities (top right),
ion power densities (bottom left) and spatio-temporally averaged electron energy probability functions
(bottom right) in comparison to results from [14].

In Figure 4, temporally and spatially averaged results of electron energy probability function

(EEPF) (bottom right) are also compared. A good agreement is obtained in all cases. Note that

EEPF is normalized as
∫∞
0 f(ε)

√
εdε = 1. It is observed in Figure 4 that the EEPF deviates from

the Maxwellian distribution when proceeding from case 1 to 4.

4. Conclusion

The main objective of this study was to develop a reliable computer programme for kinetic simulations

of gas discharge plasmas. To achieve this goal, we employed the particle-in-cell/Monte Carlo collision

(PIC/MCC) method to write a 1d3v electrostatic programme code. A comprehensive and detailed

description of the PIC/MCC method was provided in this study.

To validate the code, we conducted tests using several simulation cases of a well-established

benchmark study by Turner et al. [14]. Our comparisons of ion number densities, time-averaged

ionization source terms, power densities of electrons and ions, and time and space-averaged electron

energy probability function outputs demonstrated satisfactory agreement. It is worth noting that

Turner et al. [14] emphasized the sensitivity of ion number density distributions to numerical effects

and variations in simulation applications. Therefore, we calculated the maximum relative percent

errors in the ion number density distributions in each case to facilitate a more perceptible comparison.

These calculations revealed that the results agreed with an error of no more than about 5%, which

falls within an acceptable margin.

211



ARDA and RAFATOV/Turk J Phys

Based on these findings, we assert that the developed code is a reliable tool for conducting 1d3v

electrostatic radiofrequency capacitively coupled plasma (RFCCP) simulations.
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