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Abstract

The effect of temperature dependency on frequency factor and its relationship to
trapping parameters is discussed by using the peak shape method. The coefficients
appearing in the peak shape formula for the calculation of the activation energy
have been determined and tabulated for the symmetry factor µg(X) for x = 0.50
and 0.75 of the peak intensity. It is found that significant errors occur in the value
of the trapping parameters if the temperature dependecy of the frequency factor is
not consider.

1. Introduction

The various experimental techniques have been developed to determine the trap-
ping parameters of any trap in a crystal from the thermally stimulated luminescence (TSL)
peaks. Some of them are the initial rise (IR), variable heating rate (VHR); isothermal
decay and peak shape method among others [1].

The peak shape method is one of the most utilized technique to determine trapping
parameters, namely, the thermal activation energy E, the frequency factor s and the
kinetic order b.

Many expressions have been proposed over the last forty years based on the shape
of the glow curves for the determination of the activation energy [2]. Recently, Mazumdar
et al. [3] and Christodulies [4] proposed some simple expressions for the determination of
the activation energy based on the shape of the glow curve. However, almost all of these
expressions are developed on the assumption that the frequency factor is temperature
independent. But it has been shown that this assumption results in a significant error in
the value of the activation energy [5-7].
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The subject of the temperature dependent frequency factor, which arises from the
temperature dependence of the electron trap capture cross section σ with T x(−4 ≤ x ≤
0), the mean thermal velocity of a free electron ν with T 1/2 and the effective density
of states in the conduction band Nc with T 3/2 was first examined by Keating, who
proposed a formula for the calculation of the activation energy [8]. But Chen showed that
Keating’s formula had some limitation and accuracy problems and thus he developed his
own expressions based on the temperature dependent frequency factor for the calculation
of E By using a various combination of theoretical and computation of theoretical and
computational analysis [9]. Lately, Fleming [5] and Gartia at el. [6] woked on the
determination of activation energy by considering the temperature dependent frequency
factor in their calculation. They come to a conclusion that there would be an error
of about an order of ± 10% if the temperature frequency dependency factor is not
considered. S. D. Singh et al. [7] evaluated the coefficients Cα and Dα appearing in
the peak shape formula for the calculation of the activation energy only for the symmetry
factor µg(x) at x=0.50.

In the present work we investigated the effect of temperature dependent frequency
factor on the symmetry factor (µg) and activation energy E by using the peak shape
method. We also evaluated the coefficients Cαx and Dαx for the symmetry factor µg(x)
at x=0.50 and 0.75 for the general order kinetics.

2. Theory

2.1. First Order Kinetic (b=1)

Following Fleming [5] and Singh et al.[7] the glow intensity at any time t for a
temperature, dependent frequency factor is given by

I(t) = −C dn(t)
dt

= −n(t)S0T
a exp(− E

kT
), (1)

and integrating with respect to temperature, we have

I(T ) = Cn0S0T
a exp(− E

kT
− S0

β

∫ T

T0

T ′a exp[− E

kT ′
]dT ′). (2)

In the equation 2, all the symbols have the usual meaning and the temperature dependent
frequency factor is expressed as S = S0T

a with −2 ≤ a ≤ 2.
At the peak temperature Tm , the derivative of equation (2) with respect to T

becomes

E

kT 2
m

− S0T
a
m

exp[− E
kTm

]
β

+
a

Tm
= 0. (3)
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2.2. Non-First order Kinetics (b 6= 1)

Following Fleming [5] we have

I(t) = −C dn(t)
dt

= nb(t)S′0T
a exp(− E

kT
) (4)

and integrating with respect to T we obtain

I(T ) = Cnb0S
′
0T

a exp[− E

kT
](1 + [S′0n

b−1
0

(b − 1)
β

]
∫ T

T0

T ′a exp[− E

kT ′
]dT ′)−

b
(b−1) , (5)

where S0 in equation (1) is replaced by S′0 in equation (4) to reflect a change in dimension.
At the peak temperature Tm , the derivative of equation (5) with respect to T

becomes

a

Tm
+

E

kTm
= bS′0n

b−1
0 T am

exp[− E
kTm

]

β
(1 + [S′0n

b−1
0

b− 1
β

]
∫ Tm

T0

T ′a exp[− E

kT ′
]dT ′). (6)

The temperature dependent frequency constant S0 can be calculated from the
equation (3) and equation (6) for first-order and non-first order kinetics for given values
of E, a, b, b and Tm .

The integral occurring in equations (2), (5), (6) can not be evaluated exactly. The
follolwing procedure is used in the evaluation of integral. Let

J(T ) =
∫ T

T0

T a exp[− E

kT
]dT (7)

with u = E/kT ; equation [7] can be written as

J(u) = (
E

k
)1+a

∫ v0

v

U−(a+2) exp(−u)du (8)

which can be expressed in terms of the incomplete gamma function as

J(u) =
(
E

K

)1+a

[Γ(−1− a, u)− Γ(−1− a, u0)]. (9)

The incomplete gamma function can only be solved for integer and half-integer
values of a. For positive and negative integer values of a except a=-2, the evaluation
of equation (9) involves the Exponential Integral Ei(u). For positive and negative half-
integer of the values of a, the equation (9) can be evaluated by means of Error Function
Erf(u) [7,10].
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Following Singh et al. [11], Um = E/kTm can be expressed as linear function of
Ux1Ux2/Um(Ux1 −Ux2) for Tx1 < Tx2 , where Tx2 are the temperatures in the rising and
falling sides at the intensity ratio x, Ux1 = E/kTx1 and Ux2 = E/kTx2 , so we can write

E = Cαx
kT 2

m

Tx2Tx1

+ DαxkTm, (10)

where Tx2 − Tx1 = τx, δx, ωx and α = τ, δ, ω .
In our numerical calculation of Cαx and Dαx , it was seen that not only Dαx

depends on a but also Cαx depends on a and they can be expressed as

Cαx = C0x + C1xa

Dαx = D0x + D1xa (11)

The symmetry factor is defined in [7]

µg(x) =
ux1(um − ux2)
Um(Ux1 − Ux2)

. (12)

The Tx1 and Tx2 can be found by solving the equation (2) and equation (5) at
x=0.50 and 0.75. As mentioned before, S. D. Singh et al. evaluated the coefficients
Cαx and Dαx at the half-intensity (x=0.50). However this data is only good for the
determination of the activation energy of the isolated glow peaks [12]. But, for poorly
and partly isolated glow peaks one can not use their data. Therefore, we have determined
the coefficients Cαx and Dαx not only at the half-intensity x=0.50 but also at x=0.75 of
the maximum intensity. So that one can use our data to calculate the activation energy
of any glow peaks.

3. Desult and Discussion

In the previous section, following Fleming [5] and Sing et al. [6] procedures are
outlined and expressions are presented to evaluate the activation energy, frequency factor
and geometric shape factor. First we calculated the shape factor µg(x) at x=0.75 as a
function of Um . Figure 1a and 1b shows the variation of µg(x) as a function of Um
for 10 ≤ Um ≤ 100 and −2 ≤ a ≤ 2 for two values of kinetic order b namely 1 and 2.
The varitaion of µg(x) with Um is similar in two figures but the magnitude is different.
Another point is that the curves corresponding to different values of a almost merge for
Um ≥ 20 and that there are no meaningful difference between different values of a for
Um ≥ 20. This finding agrees with the results of Fleming and Singh et al. Since Um is
greater than 20 for the most TLD materials, we conclude that the dependence of µg(x)
on Um is very weak.

The shape factor µg(x) evaluated at x=0.50 and 0.75 is plotted against a in Figure
2a and 2b to show the explicit dependence of µg(x) on a, for Um = 10 and b=0.7; 1.0;
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1.25; 1.5; 2.0 and 2.5. We see that as a changes from -2 to 2 µg(x) decreases by about
5% for all b values. However for Um > 20, it is not almost possible to distinguish µg(x)
against a for all b values. Hence µg(x) weakly dependens on a for high values of Um
above 20.
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Figure 1. Variation of the shape factor µg(x) with Um at x=0.75 (a) for the kinetic order

b=1.0 and (b) for the kinetic order b=2.0
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Figure 2. Variation of the shape factor µg(x) with a for the Um=10 and b=0.7, 1.0, 1.25, 1.5,

2.0 2.5. (a) x=0.5 and (b) x=0.75

We have also calculated the activation energy of numerically computed TL peaks
for −2 ≤ a ≤ 2 and b=1.0 at x=0.50 for α = τ, δ, ω . Then we determined the possible
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error that occurs if one does not consider the temperature dependency of the frequency
factor. Figure 3a, b and c show the percentage error in the activation energy as a function
of Um . The percentage error is defined as the difference between the activation energy of
numerically computed TL peaks with −2 ≤ a ≤ 2 and with a=0. It is obvious that the
activation energy calculated by not considering the temperature dependency of frequency
factor can lead to an error as much as 20% at Um = 10 and 10% at Um = 20.This
result is also in good agreement with the findings of Fleming [5] and Singh et al. [6].
The coefficients Cαx and Dαx(α = τ, δ, ω) for x=0.50 and 0.75 have been evaluated by
using a numerical computer calculation based on optimization method and the results
have been tabulated in Table 1 and 2 for b=1.0, 1.5, 2.0 and 2.5. In most activation
energy equations, the coefficients Cαx and Dαx are considered to be independent of a.
Obviously both coefficients are dependent on a, but the dependence of Cαx is very weak
with compared to Dαx dependence on a.
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Figure 3. Percentage error in the activation energy for b=1.0 at x=0.5. (a) τ1/2 , (b) δ1/2 and

(c) ω1/2
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4. Conclusion

In conclusion, it should be emphasized here that any error in the evaluation of
E introduces a much higher error in the determination of S0 . Therefore, the temper-
ature dependency of the frequency factor should be considered in the analysis of the
thermoluminescence glow peaks, otherwise significant errors may occur in the calculation
of trapping parameters.

Table 1. The values of coefficients Cαx and Dαx in the peak shape formula for different order

kinetics at x=0.50

b τ1/2 δ1/2 ω1/2

Cαx 1.0 1.46013-0.00122a 0.98519-0.00009a 2.44342-0.00091a
1.5 1.62676-0.00150a 1.38613-0.00028a 3.01006-0.00130a
2.0 1.75930-0.00170a 1.76218-0.00060a 3.51802-0.00179a
2.5 1.87026-0.00188a 2.12396-0.00101a 3.99047/0.00240a

Dαx 1.0 -1.08475-0.46690a -0.08773-0.49681a -0.65339-0.48311a
1.5 -1.31820-0.46171a -0.22064-0.49249a -0.77690-0.48008a
2.0 -1.52325-0.45788a -0.38681-0.48708a -0.91611-0.47637a
2.5 -1.70818-0.45437a -0.57738-0.48125a -0.06966-0.47204a

Table 2. The values of coefficients Cαx and Dαx in the peak shape formula for different order

kinetics at x=0.75

b τ1/2 δ1/2 ω1/2

Cαx 1.0 0.86727-0.00056a 0.67349-0.00012a 1.54030-0.00056a
1.5 0.99419-0.00074a 0.89707-0.00027a 1.89056-0.00086a
2.0 1.09655-0.00089a 1.09765-0.00046a 2.19339-0.00123a
2.5 1.18328-0.00105a 1.28379-0.00067a 2.46622-0.00162a

Dαx 1.0 -0.83819-0.47448a -0.21305-0.49318a -0.5505-0.48461a
1.5 -1.07859-0.46890a -0.39558-0.48793a -0.74043-0.47998a
2.0 -1.29526-0.46441a -0.59693-0.48248a -0.93142-0.47493a
2.5 -1.49464-0.45988a -0.81108-0.47710a -1.12528-0.46996a
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