Analytical Expressions of Matrix Elements for Saxon-Woods Potential and Padé Approximations

Valentin Loan Remus NICULESCU
Institute of Atomic Physics, Institute of Physics and Technology for Radiation Devices, Electron Accelerators Laboratory, Bucuresti-Magurele, P.O.Box MG-36, R-79600-ROMANIA
e-mail:NICVAL@roifa.ifa.ro
Dumitru CATANA
Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Cyclotron Laboratory, Bucuresti-Magurele, P.O.Box MG-6, R-79600-ROMANIA

Received 13.8.1996

Abstract

The paper presents the analytical matrix elements of the kinetic hamiltonian in the oscillator base. The Padé approximations for the potential part (Saxon Woods and alike) was used. From residue calculus the potential matrix elements are analytical. Many parts of these expressions can be computed once for ever. In this way the evaluation time can be reduced and the relations obtained are well suited for parallel computation.

The theory of electromagnetic emission is well known. In this way the interaction of radiation (γ radiation) with nuclei was more easy to study [1a, 1b, 2].

To obtain the reduced probability transition we need the wave functions. These can be obtained by solving the radial Schrödinger equation with the hamiltonian :

$$
\begin{gather*}
H=-\left(\hbar^{2} / 2 m\right) d^{2} / d r^{2}+2 / r d / d r-\ell(\ell+1) / r^{2}+V(r) \tag{1}\\
V(r)=V_{c}(r)+V_{\ell s}(r)+V_{\text {coulomb }}(r) \tag{2}\\
V_{c}(r)=-V_{0}^{N, Z} / 1+\exp \left(\beta\left(r-R_{0}\right)\right) \tag{3}\\
V_{l s}(r)=-\aleph / r^{\star}(d V / d r)^{\star} \mathbf{l}^{\star} \mathbf{s}, \quad \mathbf{l}^{\star} \mathbf{s}=[j(j+1)-l(l+1)-s(s+1)]^{/ 2} \tag{4}
\end{gather*}
$$

The coulombian part for a uniform charged sphere is

$$
\begin{gather*}
V_{\text {coulombian }}(r)=(Z-1) e^{2} / r^{\star}\left[(3 / 2)\left(r / R_{o}\right)-1 / 2\left(r / R_{o}\right)^{3}\right] \quad \text { for } \quad r \leq R_{o} \tag{5}\\
V_{\text {Coulombian }}(r)=(Z-1) e^{2} / r \quad \text { for } \quad r>R_{o} \tag{6}
\end{gather*}
$$

The nuclear potential like inter-atomic potentials [3-5] can be evaluated by Padé approximants and minimax method. The sum of the central saxon-Woods (SW) potential and the coulombian part was evaluated by Padé approximants (unified potential) [6]. The harmonic oscillator wave functions [7] are:

$$
\begin{equation*}
R_{n l}(r)=\left[2^{\star} \alpha^{3 / 2} \star \Gamma(n+1) / \Gamma(n+l+3 / 2)\right]^{1 / 2}\left(\alpha \star r^{2}\right)^{\ell / 2} \star L_{n}^{l+1 / 2}\left(\alpha^{\star} r^{2}\right) \exp \left(-\alpha^{\star} r^{2} / 2\right) \tag{7}
\end{equation*}
$$

$L_{n}^{l+1 / 2}\left(\alpha r^{2}\right)=\sum_{m=0}^{n}(-1)^{m}\left[\Gamma(n-m+1)^{\star} \Gamma(n+l+3 / 2) /(\Gamma(m+l+3 / 2) \Gamma(m+l))\right]^{\star}\left(\alpha r^{2}\right)^{m}$,
Where θ is the Heaviside operator. The substitution $\mathrm{u}=\sqrt{\alpha} \star r$ and the following relations were used [8]:

$$
\begin{gather*}
\int_{0}^{\infty} t^{2 n} \exp \left(-a t^{2}\right) d t=\Gamma(n+1 / 2) /\left(2 a^{n+1 / 2}\right) \tag{9}\\
\int_{0}^{\infty} t^{2 n+1} \exp \left(-a t^{2}\right) d t=\Gamma(n+1) /\left(2 a^{n+1}\right) \tag{10}
\end{gather*} \quad a>0 \quad n=0,1,2, \cdots,
$$

Then the matrix elements for the hamiltonian kinetic part (3-components) were obtained:

$$
\begin{align*}
& \int R_{n^{\prime} l^{\prime}}(r)\left(d^{2} / d r^{2}\right) R_{n l}(r) R^{2} d r=\alpha^{\star} 2^{\star} A_{n l}^{\star} A_{n^{\prime} l^{\prime}}^{\star} \sum_{m=0}^{n} B_{n l m} \sum_{m^{\prime}=0}^{n^{\prime}} B_{n^{\prime} l^{\prime} m^{\prime}} \\
& *\left\{\left[\theta\left(\ell^{\prime}-2\right) * \ell^{\prime} *\left(\ell^{\prime}-1\right) * I\left(\ell, \ell^{\prime}, m, m^{\prime}, 0\right)-\left(\theta\left(\ell^{\prime}-1\right) * \ell^{\prime}+\left(\ell^{\prime}+1\right)\right)\right.\right. \\
& \left.* I\left(\ell, \ell^{\prime}, m, m^{\prime}, 2\right)-I\left(\ell, \ell^{\prime}, m, m^{\prime}, 4\right)\right]+ \\
& +\left[\left(\theta\left(\ell^{\prime}-1\right) * \theta\left(n^{\prime}-1\right) * \ell^{\prime}+\theta\left(n^{\prime}-1\right) * \ell^{\prime}\right) *\left(2 m^{\prime}\right) * I\left(\ell, \ell^{\prime}, m, m^{\prime}, 0\right)\right]+ \\
& \left.+\left[\theta\left(n^{\prime}-2\right) *\left(2 m^{\prime} *\left(2 m^{\prime}-1\right)\right) * I\left(\ell, \ell^{\prime}, m, m^{\prime}, 0\right)\right]\right\} \tag{11}\\
& \int_{0}^{\infty} R_{n^{\prime} l^{\prime} \cdot}\left(2 / r^{\star} d / d r\right) R_{n l}(r) r^{2} d r=\alpha^{2 \star} 4^{\star} A_{n l} A_{n^{\prime} l^{\prime}}
\end{align*}
$$

$$
\begin{array}{r}
\star \sum_{m=0}^{n} B_{n l m} \sum_{m^{\prime}=0}^{n^{\prime}} B_{n^{\iota} l m^{*}} *\left\{\theta\left(l^{\iota}-1\right)^{\star} l^{\iota} I\left(l, l^{\iota}, m, m^{\varsigma} 0\right)\right. \\
\left.-I\left(l, l^{\iota}, m, m^{\iota}, 2\right)+\theta\left(n^{\star}-1\right)^{\star}\left(2 m^{\iota}\right)^{\star} I\left(l, l^{\iota}, m, m^{\iota}, 0\right)\right\} \tag{12}
\end{array}
$$

$$
\begin{gather*}
\int_{0}^{\infty} R_{n^{\prime} l^{\prime}}(r)\left(l^{\star}(l+1) / r^{2}\right) R_{n l}(r) r^{2} d r=\alpha^{\star} 2^{\star} A_{n l} A_{n^{\prime} l^{l}} \\
\quad \star \sum_{m=0}^{n} B_{n l m} \sum_{m^{\prime}=0}^{n^{\prime}} B_{n} l^{\prime} m^{\star} I\left(l, l^{\star}, m, m^{‘}, 0\right) \tag{13}
\end{gather*}
$$

$$
\begin{align*}
& A_{n l}=[\Gamma(n+1) / \Gamma(n+l+3 / 2)]^{1 / 2}=2^{n+\ell} \sqrt{2} / \pi^{1 / 4} \sqrt{n}!(n+l)!/\left(2^{\star}(n+l)+1\right)! \\
& =(-1)^{m} \quad \text { for } m=n \tag{14}
\end{align*}
$$

$$
\begin{gather*}
B_{n l m}=(-1)^{m}[\Gamma(n+l+3 / 2) /(\Gamma(n-m+1) \Gamma(m+l+3 / 2) \Gamma(m+1))] \\
=(-1)^{m}\left(2^{\star}(n+l)+1\right)!(m+l)!/\left(2^{\star}(m+l)+1\right)!/(n+l)!2^{\left(2^{\star}(m-n)\right)} \tag{15}\\
I\left(l, l^{\star}, m, m^{\star}, k\right)=\int_{0}^{\infty} u^{l+l^{\iota}+k+2 m+2 m^{\prime}} \exp \left(-u^{2}\right) d u \tag{16}
\end{gather*}
$$

In tables $(1,2)$ some values of $A_{n l}$ and $B_{n l m}$ are given. The matrix element for SW central part (neutrons) is

Table 1. The coefficients $A_{n l}$ (nl=00 etc.)

$\mathbf{n l}=\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{0 2}$	$\mathbf{1 0}$	$\mathbf{0 3}$
$\sqrt{2} / \boldsymbol{\pi}^{1 / 4}$	$2 \sqrt{3} / \pi^{1 / 4}$	$2 \sqrt{(2 / 15)} / \pi^{1 / 4}$	$2 \sqrt{3} / \pi^{1 / 4}$	$4 / \sqrt{105} / \pi^{1 / 4}$
$\mathbf{n \mathbf { l } = \mathbf { 1 1 }}$	$\mathbf{0 4}$	$\mathbf{1 2}$	$\mathbf{2 0}$	$\mathbf{0 5}$
$2 \sqrt{(2 / 15)} / \pi^{1 / 4}$	$4 \sqrt{(2 / 105)} / \pi^{1 / 4}$	$41 \sqrt{105} / \pi^{1 / 4}$	$4 \sqrt{15} / \pi^{1 / 4}$	$8 / 3 / \sqrt{1155} / \boldsymbol{\pi}^{1 / 4}$
$\mathbf{n \mathbf { l } = \mathbf { 1 3 }}$	$\mathbf{2 1}$	$\mathbf{0 6}$	$\mathbf{1 4}$	$\mathbf{2 2}$
$4 / 3 \sqrt{(2 / 105)} / \boldsymbol{\pi}^{1 / 4}$	$4 \sqrt{(2 / 105)} / \pi^{1 / 4}$	$8 / 3 \sqrt{(2 / 15015)}$	$8 / 3 \sqrt{1155} / \pi^{1 / 4}$	$8 / 3 / \sqrt{105} / \pi^{1 / 4}$
		$/ \pi^{1 / 4}$		

$$
\begin{align*}
& \int R_{n^{\iota} l^{\prime}}(r) V_{c}(r) R_{n l}(r) R^{2} d r=2^{\star} A_{n l} A_{n^{\iota} l^{l}} \sum_{m=0}^{n} B_{n l m} \sum_{m^{\prime}=0}^{n^{\prime}} B_{n^{\prime} l^{\iota} m^{\iota}}^{\star} \\
& \star \alpha^{\left(\ell+\ell^{\iota}+3\right) / 2+m+m^{\iota}} \star \int_{0}^{\infty} u^{\ell+\ell^{\iota}+2+2 \star m+2 \star m^{\iota}} V_{c}(r)^{\star} \exp \left(-\alpha^{\star} u^{2}\right) d u \tag{17}
\end{align*}
$$

and for the spin-orbit part we have:

$$
\begin{gather*}
\int_{0}^{\infty} R_{n^{\prime} l^{\prime}}(r)\left(-\aleph^{\star}\left(\mathbf{l}^{\star} \mathbf{s}\right) / r^{\star}(d V / d r) R_{n l}(r) r^{2} d r=-\aleph^{\star}\left(\mathbf{l}^{\star} \mathbf{s}\right)^{\star} 2^{\star} A_{n l}^{\star} A_{n^{\prime} l^{\bullet}}\right. \tag{18}\\
\star \sum_{m=0}^{n} B_{n l m} \sum_{m^{\iota}=0}^{n^{\star}} B_{n^{\iota} l^{\iota} m^{\iota}} \alpha^{\left(\ell+\ell^{‘}+3\right) / 2+m+m^{\iota}} \\
\star \int_{0}^{\infty} u^{\ell+\ell^{‘}+1+2^{\star} m^{\iota}}(d V(u) / d u)^{\star} \exp \left(-\alpha^{\star} u^{2}\right) d u \tag{19}
\end{gather*}
$$

The integrals from eq. $(18,19)$ can be evaluated analytically by residue theorem with Padé approximants for SW and unified potentials. The method is potential and type particle free. The rational functions approximations of the potential have only complex poles in the right half plane. A circle sector (C) with $\pi / 4$ angle for integration contour [9] was choosed. From relations $(18,19)$ we note that the integrants are of the following type:

Table 2 . The coefficients $B_{n l m}(\mathrm{nlm}=000$ etc. $)$

nlm $=\mathbf{0 0 0}$	$\mathbf{0 1 0}$	$\mathbf{0 2 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 1}$	$\mathbf{0 3 0}$	$\mathbf{1 1 0}$	$\mathbf{1 1 1}$
1	1	1	3	-1	1	5	-1
nlm $=\mathbf{4 0 0}$	$\mathbf{1 2 0}$	$\mathbf{1 2 1}$	$\mathbf{2 0 0}$	$\mathbf{2 0 1}$	$\mathbf{2 0 2}$	$\mathbf{0 5 0}$	$\mathbf{1 3 0}$
1	7	-1	15	-5	1	1	9
nlm $=\mathbf{1 3 1}$	$\mathbf{2 1 0}$	$\mathbf{2 1 1}$	$\mathbf{2 1 2}$	$\mathbf{0 6 0}$	$\mathbf{1 4 0}$	$\mathbf{1 4 1}$	$\mathbf{2 2 0}$
-1	35	-7	1	1	11	-1	63
nlm=221	$\mathbf{2 2 2}$	$\mathbf{3 0 0}$	$\mathbf{3 0 1}$	$\mathbf{3 0 2}$	$\mathbf{3 0 3}$	$\mathbf{0 7 0}$	$\mathbf{1 5 0}$
-9	1	105	-35	7	-1	1	13
nlm $=\mathbf{1 5 1}$	$\mathbf{2 3 0}$	$\mathbf{2 3 1}$	$\mathbf{2 3 2}$	$\mathbf{3 1 0}$	$\mathbf{3 1 1}$	$\mathbf{3 1 2}$	$\mathbf{3 1 3}$
-1	99	-11	1	315	-63	9	-1
nlm $=\mathbf{0 8 0}$	$\mathbf{1 6 0}$	$\mathbf{1 6 1}$	$\mathbf{2 4 0}$	$\mathbf{2 4 1}$	$\mathbf{2 4 2}$	$\mathbf{3 2 0}$	$\mathbf{3 2 1}$
1	15	-1	143	-13	1	693	-99
nlm $=\mathbf{3 2 2}$	$\mathbf{3 2 3}$	$\mathbf{4 0 0}$	$\mathbf{4 0 1}$	$\mathbf{4 0 2}$	$\mathbf{4 0 3}$	$\mathbf{4 0 4}$	$\mathbf{0 9 0}$
11	-1	945	-315	63	-9	1	1
$\mathbf{n l m}=\mathbf{1 7 0}$	$\mathbf{1 7 1}$	$\mathbf{2 5 0}$	$\mathbf{2 5 1}$	$\mathbf{2 5 2}$	$\mathbf{3 3 0}$	$\mathbf{3 3 1}$	$\mathbf{3 3 2}$
$\mathbf{1 7}$	-1	195	-15	1	1287	-143	13
$\mathbf{n l m}=\mathbf{3 3 3}$	$\mathbf{4 1 0}$	$\mathbf{4 1 1}$	$\mathbf{4 1 2}$	$\mathbf{4 1 3}$	$\mathbf{4 1 4}$	$\mathbf{0 1 0 0}$	$\mathbf{1 8 0}$
-1	3465	-693	99	-11	1	1	19

$$
\begin{equation*}
f(z)=z^{N} \star\left(a_{0}+a_{1}^{\star} z+a_{2}^{\star} z^{2}\right) /\left(b_{0}+b_{1}^{\star} z+a_{2}^{\star} z^{2}+b_{3}^{\star} z^{3}+b_{4}^{\star} z^{4}+b_{5}^{\star} z^{5}\right) \exp \left(-\alpha^{\star} z^{2}\right), \tag{20}
\end{equation*}
$$

where N is an integer. Then by residue theorem we have:

$$
\begin{equation*}
\int_{c} f(z) d z=2 \pi i^{\star} \sum_{k=1}^{P} R_{k} \tag{21}
\end{equation*}
$$

where z_{1}, \cdots, z_{5} are $\mathrm{f}(\mathrm{z})$'s poles, R_{k} residues respectively. It can be shown that $\int_{C} \mathrm{f}(\mathrm{z})$ dz on real axis is $\int_{0}^{\infty} \mathrm{f}(\mathrm{x}) \mathrm{dx}$. Because the poles in $(0, \infty)$ are simple complex ones, the residues are computed by the formula : $R_{k}=\lim \left[\left(z-z_{k}\right)^{\star} f(z)\right]$ for $z \rightarrow z_{k}$

We choose those poles z_{1}, \cdots, z_{5} which belong to the interior of contour C. So we obtained analytical expressions. Taking into account relations (14, 15, 26) for the λ multipole reduced transition probability we have:

$$
\begin{align*}
& \int_{0}^{\infty} R_{n^{\prime} l^{\prime}}(r) r^{\lambda} R_{n l}(r) r^{2} d r=2^{\star} \alpha^{-\lambda / 2} \star \sum_{N=0}^{N_{\max }} a_{n l} A_{n l} \sum_{N^{\star}=0}^{N^{\iota} \max } a_{n^{〔} l^{l}} A_{n^{\iota} l^{\iota}} \\
& \star \sum_{m=0}^{n} B_{n l m} \sum_{m^{‘}=0}^{n^{\star}} B_{n^{\prime} l^{\prime} m^{\prime}} I\left(l, l^{\iota}, m, m^{\star}, \lambda+2\right) \tag{22}
\end{align*}
$$

where $a_{n, l}, a_{n^{\prime} l^{\prime}}$ are developments' coefficients for oscillator harmonic base and $N_{\max }$, $N^{{ }^{\dagger}}{ }_{\max }\left(N_{\max }=N^{{ }^{\dagger}}{ }_{\max }\right)$ are the number of shells taken into account. The same procedure can be also applied to the following core Saxon-Woods potentials [10]:

$$
\begin{align*}
V(r)= & -V_{o}\left(r / r_{c}\right)^{\star} H e a v i s i d e\left(r_{c}-r\right)-V_{0} /\left(1+\exp \left(\alpha\left(r-R_{0}\right)\right)\right)^{\star} \operatorname{Heaviside}\left(r-r_{c}\right) \\
V(r)= & -\left[r^{2} r_{c}^{2} /\left(V_{0}-V_{d}\right)+V_{d}\right]^{\star} H e a v i s i d e\left(r_{c}-r\right)-V_{0} /\left(1+\exp \left(a^{\star} r-r_{c}\right)\right) \star \tag{23}\\
& \text { Heaviside }\left(r-r_{c}\right), \tag{24}
\end{align*}
$$

where r_{c} is in the region where the potential $\mathrm{V}(\mathrm{r})$ don't vary significantly and V_{d} is the neck potential at $\mathrm{r}=0$

The paper presents the analytical matrix elements of the hamiltonian in the oscillator base. The Padé approximation of the potential part (Saxon - Woods and alike) was used. By residue calculus the potential matrix elements obtained are analytical. Also many parts of the expressions need only be computed once. The expressions was computed by Maple. The evaluation time can be reduced and the relations obtained are suited for parallel computation.

Akcnowledgments

The work was done under the contract of the Romanian Ministry of Science and Technology. Also we acknowledge the support of the Université Libre de Bruxelles, CSO and Dr. Marc Hou.

References

[1] a) M.L.P. Antunes, M.N.Martins, Phys. Rev.C52 (3) (1995) 1484.
b) Lojeweski, B. Nerlo-Pomorska, K. Pomorski, J. Dudek, Phys. Rev. C51 (1995) 601.
[2] V.L. Soloviev, Teoria Atmnova Iadra, Iadernie Modeli, Moskva, Ienergoizgam (1981).
[3] V.I.R. Niculescu, A.O.R. Cavaleru, Optoelectronica, 1 (1994) 129; 2 (1994) 33.
[4] V.I.R. Niculescu, D. Catana, Rom.J.Phys., 39 (1994) 173.
[5] V.I.R. Niculescu, D. Catana, "Padé Approximation of the Differential Electron-Atom Elastic Scattering Cross-Section, 4-th European Conf. on Accelerators in Appl. Res. and Tech., Aug. 29-Sept. 2 (1995) B36.
[6] V.I.R. Niculescu, D. Catana, Romanian J.Phys., 40 (8) (1995) (in print).
[7] G.Arfken, Mathematical Methods for Physicists, Academic Press, New York (1968).
[8] M. Abramovitz, I.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics, Series 55 (1967).
[9] I.L. Popescu, I. Armeanu, D. Blidaru, N. Cotfas, I. Sandru, Problems of complex analysis, Editura Tehnica, Bucuresti (1995) (in romanian).
[10] V.I.R. Niculescu, D. Catana, "Padé approximants of the Saxon-Woods Core Potential (SWC), (internal report).

