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Département de Physique Théorique
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Abstract

Using analytical properties of a 1-loop open parabosonic M-point transition am-
plitude, we show that the space-time critical dimension depends on the order of the
paraquantization.

1. Introduction

One of the main goals of quantum mechanics (QM) is to provide a consistent and unified
description of the so-called wave-particle duality which is a direct consequence of the
Heisenberg equations of motion. It turns out that the canonical commutation relations -
which guarantee the Heisenberg equations - are not unique [1]. The general framework
in which the canonical commutation relations are generalized is called paraquantization
and characterized by an order parameter Q [2-9]. Although it is, in principle, possible to
study the paraquantum observables within the usual Hilbert space, it is often convenient
to use a larger Hilbert space in which the operators satisfy simple bilinear relations [2],
[10-12]. Traditionally, for Focks-type irreducible representation of paraquantum theories
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with a unique vacuum state, this is done by means of the Green decomposition [2], [10-12]:

an =
Q∑
β=1

a(β)
n (1)

where Q is the order of the paraquantization, β the Green index and a(β)
n is the bosonic an-

nihilation operators with Green components satisfying the following bilinear but anoma-
lous commutation relations: [

a(β)
n , a+(α)

m

]
+

= 0 α 6= β[
a(α)
n , a+(α)

m

]
−

= δmn . (2)

The purpose of this paper is to derive the space-time critical dimension for an open para-
bosonic string by using the meromorphic properties of the M -point transition amplitude.
In Section 2, we describe the formalism and in Section 3 we derive the critical dimension
and finally in Section 4 we draw our conclusions.

2. Formalism

The Nambu-Goto classical action of a free relativistic open bosonic string is given by [13]:

S = − 1
2πα′

∫
dτdσ[(ẋ · x′)2 − ẋ2x′2]1/2, (3)

where τ and σ are dimensionless word-sheet parameters and α′ is the string tension (here,
“’ ” as in x′ and “·” as in ẋ denotes ∂

∂σ and ∂
∂τ , respectively). The general solution of

the equations of motion in the light cone gauge is [13]:

xi(σ, τ ) = qi + 2α′pi + 2α′
1√
2

∞∑
n=1

1√
n

[aine
−inτ + a+i

n e
inτ ] cosnσ, (4)

where qi and pi are the string centre of mass coordinates and momentum, respectively.
After quantization the physical states |Ψ〉phy are subject to the Virasoro conditions:

Ln|Ψ〉phy = 0 n > 1
and

[L0 − α(0)]|Ψ〉phy = 0, (5)

(here, α(0) = 1) where the Virasoro generators Ln and L0 are given by:

Ln =
1

2α′

∞∑
m=1

: αin−mα
i
m :

L0 =
1

2α′

∞∑
m=1

αi−mα
i
m (6)
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with
αi0 = 2α′pi, αi−n =

√
2α′na+i

n , αin =
√

2α′nain.

It is to be noted that the string dynamical variables qi, pi, q−, p+, ai and a+i verify the
following non vanishing canonical commutation relations:

[qi, pi] = iδij

[q−, p+] = −i
[ain, a

+j
m ] = δmnδ

ij. (7)

Now, for the paraquantization the commutation relations (2.5) become:

[qi, pi] = iδij

[q−, p+] = −i
[ai(β)
n , a+j(α)

m ]+ = 0, α 6= β

[ai(α)
n , a+j(α)

m ]− = δmnδ
ij, (8)

where we have used the Green decomposition (1.1) for ain and a+j
m and the fact that

the observables, like qi, pi, q−, p+, which describe the center of mass coordinates and
momentum of the string, should not be affected by the paraquantization [14-17]. In other
words, the space-time properties of the string remain unchanged. This can be achieved
by choosing a specific direction in the Green para-space-like relations [14-17]:

qi(α) = qiδα1, pi(α) = piδα1, q−(α) = q−δα1, p+(α) = p+δα1. (9)

3. M-Point Transition Amplitude

The 1-loop open parabosonic string M-point transition amplitude for a planar diagrams
with M external tachyons, which is topologically equivalent to a disk with a hole quenched
in the interior and external lines located on the exterior edge, can be written as:

A(1, 2, . . . ,M) =
∫ Q∏

β=1

dDp(β)Tr[∆V (k1, 1)∆V (k2, 1) · · ·∆V (kM ,M)]. (10)

(Here, kj = 1,M is the jth external tachyon momentum and propagator ∆ has is ex-
pressed as

∆ = (L0 − α(0))−1 (11)

with L0 as the paraquantum Virasoro operator [15-17] given by:

L0 = −
Q∑
β=1

∞∑
m=1

: αi(β)
−mα

i(β)
m : (12)
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(we take 2α′ = 1) and
α(0) = Q(D − 2)/24.

(“: :” means normal ordering). The paraquantum vertex operator V (Kr , 1) has the
expression

V (kr, 1) = eiL0 V (kr, 0)eiL0,

where

V (kr, 0) = g : exp

[
i

2

Q∑
γ=1

D−2∑
i=1

Ki(γ)qi(γ)

]
, (13)

where g is the coupling.
It is to be noted that the propagator ∆ has the following useful integral representation:

∆ =
∫
dx xL0−α(0)−1. (14)

Now, using the integral representation (3.5) and the fact that

xL0V (kr, 1) = V (kr, x)xL0, (15)

where
V (kr, x) = ei×L0V0(kr, 0)e−i×L0 , (16)

where
V (kr, x) = ei×L0V0(kr, 0)e−i×L0 , (17)

the transition amplitude (3.1) can be rewritten as:

A(1, 2, . . . ,M) =
∫ M∏

i=1

dxi

∫ Q∏
β=1

dDp(β)Tr
[
V0(k1, x1) · · ·V0(kM , x1 · · ·xM)wL0−1−α(0)

]
(18)

with
w = x1x2 · · ·xM . (19)

Noticing that
M∏
i=1

dxi = dw

M−1∏
i=1

dρi
ρi
, (20)

where
ρi = x1x2 · · ·xi, (21)

Eq. (3.8) can be simplified to:

A(1, 2, . . . ,M) =
∫

dw

w1+Q(D−2)/24

∫ M−1∏
r=1

dρr
ρr

ϑ(ρr − ρr+1)I(1, 2, . . . ,M) (22)
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with

I(1, 2, . . . ,M) =
∫

dw

β = 1
dDp(β)Tr

[
V0(k1, ρ1)V0(k2, ρ2) · · ·V0(kM , ρM )wL0

]
. (23)

The trace (3.13) can be easily calculated by using the paraquantum coherent state method
[2]. In fact, using the identity

TrM =
Q∑
β=1

1
π

∫
dλ(β)

n dλ(β)
n e−|λ

(β)
n |

2
〈λ(β)
n |M |λ(β=

n 〉, (24)

where
|λ(β)
n 〉 = exp

[
λ(β)
n a+(β)

n

]
|0〉 (25)

and
a(α)
n |λ(β)

m 〉 = δαβδnmλ
(β)
n |λ(β)

m 〉 (26)

〈µ(α)
n |λ(β)

m 〉 = exp
[
µ∗(α)
n λ(β)

m

]
δαβδnm (27)

(µ(α)
n and λ

(β)
m are arbitrary complex numbers) and the fact that

x
∑

D−2

i=1
a+i(β)
n ai(β)

n |λ(β)
m 〉 = δnm|λ(β)

m x〉 (28)

and

〈0| exp

(
−KI

∞∑
n=1

1√
n
ai(β)
n

)
+
∑

D−2

k=1

∑
m=1

mak+(β)
m ak(β)

m exp

(
KJ

∞∑
n=1

1√
n
aj(β)
n

)
|0〉

= (1− x)KIKJ δij , (29)

straightforward calculations give:

I(1, 2, . . . ,M) = Q[f(w)]−Q(D−2)

(
− 2π
Lnw

)Q(D−2)/2 ∏
I<J

[ΨIJ ]kIkJ , (30)

where
f(w) =

∏
n=1

(1− wn) (31)

and

ΨIJ = −2πi exp
[

ln2 CJI
2 lnw

]
ϑ1

(
lnCJI

2πi
| lnw
2πi

)
/ϑ′1

(
0| lnw

2πi

)
(32)

with
CJI = ρJ/ρI (33)
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and ϑ1 (resp ϑ′1) being Jacobi function (resp. its derivative). Now, introducing new
variables

νr =
ln ρr
lnw

(34)

and

q = exp
(

2π2

lnw

)
, (35)

and using the identities

dw

w

M−1∏
r=1

dρr
ρr

ϑ(ρr − ρr+1) =
1

2π2
(− lnw)M+1 dq

q

M−1∏
r=1

ϑ(νr+1 − νr)dνr (36)

and

1
wQ(D−2)/24

[f(w)]−Q(D−2) =
(
− π

ln q

)Q(D−2)/2 1
qQ(D−2)/12

[f(q2)]−Q(D−2), (37)

the transition amplitude (3.12) takes the form:

A(1, 2, . . . ,M) =
Q

π
gM
∫ 1

0

M−1∏
i=1

ϑ(νi+1 − νi)dνi
∫ 1

0

dqq−1+Q(2−D)/12W−1−Q(2−D)/24

×
(
−2π2

ln q

)M
[f(q2)]−Q(D−2)

∏
I<J

[ΨIJ ]kIkJ . (38)

Now, by extracting the ln q factor from (3.22) and using the kinematical relation∑
I<J

KIKJ = −1/2
∑
I

K2
I = −M, (39)

and in order that the integrand in (3.28) can be a meromorphic function, i.e., the only
existent singularities are a finite number of poles, the power of the W factor must vanish.
Consequently, one deduces that the space time critical dimension must verify the relation

D =
24
Q

+ 2.

4. Conclusion

We conclude that the meromorphic property of the M -point transition amplitude with
external tachyons and the generalization of the quantization procedure are strongly re-
lated to the critical space-time dimension of the parabosonic string D = 24

Q + 2. More
details are being investigated [19].
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