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Abstract
A diffusion-cooled CO2 laser using a coaxial waveguide is investigated theoreti-

cally. The resonator extracting the laser beam consits of two annular plane mirrors
enclosing the two ends of the waveguide. A theoretical resonator model based on
the vector modes of propagation in a dielectric coaxial waveguide is described.

1. Introduction

Laser action of carbon dioxide (CO2) was reported for the first time by Patel in
1964 [1]. The principles of a waveguide gas laser were first discussed by Marcatili and
Schmeltzer (1964) and waveguide operation of He- Ne was reported by Smith (1971) [2].
Ordinarily, operation of a laser in an extremely small bore (≤ 1mm) tube greatly enhances
the radiation loss due to diffraction.

However, when the tube is constructed in the form of a dielectric waveguide diffraction
losses are minimized and advantage may be taken of the proximity of the walls of the
discharge tube to reduce the gas temperature and to facilitate deexcitation of molecular
species through collision with the walls. These factors result in the possibility of operating
at high pressure with an attendant increase in gain, power output per unit volume,
linewidth and saturation intensity [3,4,5]. CO2 waveguide gas laser has the high specific
output power that can be obtained from a very small device. A maximum specific power
of 0.85 W/cm2 obtained so far has been reported by the group of Hall [6,7,8].

2. Theory and Results

High-power diffusion-cooled planar waveguide lasers have recently been investigated
[9,10]. This work presents a theoretical analysis of a coaxial waveguide laser. A Schematic
view of the laser resonator is shown in Figure 1.

An annular beam is guided within the coaxial waveguide and reflected by two annular
mirrors attached close to the waveguide ends [11].
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For a theoretical analysis of this resonator the modes of propagation in a coaxial
waveguide are essential. Metallic guide materials and dielectrics are covered by the same
mathematical approach because they are both described by their complex refraction in-
dex. Due to vector boundary conditions at the guide surfaces the radiation has to be
treated with all its field compenents. Earlier investigations of dielectric coaxial waveguides
were conducted in order to use these waveguides for optical transmission line purposes.
Marcatili gives approximative solutions for the lowest azimuthal order mode [12]. V. A.
Pruzhanovskii obtained solutions for modes of radial and azimuthal orders less than 2
using rather complex analytical approximations [13].
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Figure 1. Schematic of waveguide resonator. Two annular plane mirrors enclose the coaxial

waveguide (a). The two mirrors (b, c) are attached close to the guide ends in order to avoid free

space propagation losses. One mirror (b) is provided with a coupling aperture [10].

The electromagnetic modes in a coaxial waveguide are solutions of the Maxwell equa-
tions satisfying boundary conditions at the guide surfaces. The dielectric properties of
the guide walls are given by their complex refraction index n =

√
εµ/ε0µ0. The waveg-

uide consists of an inner and outer guide wall with refraction index n1 and n2. As the
thickness of the guide wall is much larger than the optical penetration depth the outer
wall is assumed to be of infinite thickness and the inner wall is treated like a massive
cylinder. Laser gas with refraction index n3 fills the gap.
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The electromagnetic modes are assumed to be monochromatic and to be eigenfunc-
tions of the propagation in z-direction with fixed azimuthal symmetry L:

E(r,∅, z, t) = E(r) exp[i(Bz + L∅− wt)] (1)
E(r,∅, z, t) = H(r) exp[i(Bz + L∅ − wt)]. (2)

Waves traveling in positive z-direction have a positive real part of the axial propagation
constant B while damping is given by a positive imaginary part [10, 14]. The field
components are coupled by the Maxwell equation and a convenient approach in waveguide
theory is to express the fields E and H by their independent z components. With n2k2 =
w2, we have the components

Er =
iB

n2K2 − B2

[
∂Ez
∂r

+
Mw

B

1
r

∂Hz

∂∅

]
(3)

E∅ =
iB

n2K2 − B2

[
1
r

Ez
∂∅
− Mw

B

∂Hz

∂r

]
(4)

−Hr =
iB

n2K2 − B2

[
n2K2

MwB

1
r

∂Ez
∂∅

+
∂Hz

∂r

]
(5)

H∅ =
iB

n2K2 − B2

[
n2K2

MwB

∂Ez
∂r
− 1
r

∂Hz

∂∅

]
. (6)

The Maxwell equations or, equivalently, the wave equation for the field components
Ez and Hz must be solved [10].

Using representation (1)-(2) the wave equation in cylindrical coordinates for the z-
components reads [

1
r

∂

∂r
(r
∂

∂r
)
L2

r2
+ n2K2 −B2

]
Ψ = O. (7)

The solution of (7) consists of two linearly independent parts:

Ψ(r) = AJL(Kr) + BNL(Krr) (8)

with

K2
r = n2K2 −B2 , (9)

where JL is the Bessel function whereas NL is the Neumann function.
An alternative set of linearly independent solutions is given by the Hankel functions:

H
(1)
L = JL + iNL (10)

H
(2)
L = JL − iNL. (11)
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The asymptotic behavior of these functions for Z = Krr →∞ is helpful for dropping
physically meaningless solutions:

JL(z)→
√

2
πZ

cos(z − Lπ/2 − π/4) (12)

NL(z)→
√

2
πZ

sin(z − Lπ/2− π/4) (13)

H
(1)
L →

√
2
πZ

exp[i(z − Lπ/2− π/4)] (14)

H
(2)
L →

√
2
πZ

exp[−i(z − Lπ/2− π/4)]. (15)

JL and NL asymptotically represent standing waves whileH(2)
L and M (2)

L are out ward
and inward traveling waves, respectively. Since there is no radiation traveling from outer
sources towards the origin the only possible solution for the outer area is H(1)

L . Apart
from JL all these functions are singular at the origin r = o. The only acceptable solution
for the inner areas is therefore JL. The fields in the three areas of the waveguide must
have the general form [10].

E(1)
z = AJL(Kr1r) exp[i(B1z + L∅ − wt] (16)

H(1)
z = BJL(Kr1r) exp[i(B1z + L∅− wt] (17)

E(3)
z = [(JL(K3r) + DNL(kr3)] exp[i(B3z + L∅ −wt)] (18)

H(3)
z = [FJL(Kr3r) + GNL(kr3)] exp[i(B3z + L∅ −wt)] (19)

E(2)
z = IH

(1)
L (Kr2r) exp[i(B2z + L∅ −wt)] (20)

Hz = KH
(1)
K (Kr2r) exp[i(B2z + L∅ −wt)], (21)

with unknown coefficients A, B, C, D, F, G, I and K [12].
The tangential components E and H have to be continuous in the absence of free

currents and changes at the boundaries of two different media.
These boundary conditions determine the 8 unknown coefficients A, B, C, D, F, G, I

and K. Since the boundary conditions have to be satisfied for all axial coordinates z the
equality B1 = B2 = B3 = B follows. The wave equation (7) provides relations between
the different propagation constants

K2
r1 = n2

1K
2 − B2 (22)

K2
r2 = n2

2K
2 − B2 (23)

K2
r3 = n2

3K
2 − B2. (24)
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The axial propagation constant B determines all the radial propagation constants
Kr . Application of the boundary conditions leads to a linear set of equations for the 8
unknown coefficients A, B, C, D, F, G, I and K. The coefficients of the linear equations
thus form an 8X8 matrix M(B).

A nontrivial solution exists when the determinant of this matrix M(B) is zero. The
zeros of the determinant [M (B)] determine discrete propagation constants B. If there is no
degeneracy, each B corresponds to a certain transversal field distribution given by Ez and
Hz and Az through (3)-(6). The determinant will be different for each azimuthal order
L and the zeros represent the propagation constants of different radial modes for fixed
L. The matrix and determinant are explicitely derived in what follows. The coefficients
of (16)-(21) (A, B, C, D, F, G, I, K) are determined by the continuity of the tangential
components of H and E at the boundaries. Continuity of Ez in a and b gives:

AJL(Kr1a) = CJL(Kr3a) + DNL(Kr3a) (25)

IH
(1)
L (Kr2b) = CJL(Kr3b) + DNL(Kr3b). (26)

Continuity of Hz in a and b gives:

BJL(Kr1a) = FJL(Kr3a) +GNL(Kr3a) (27)

KH
(1)
L (Kr2b) = FJL(Kr3b). (28)

Continuity of E∅ in a and b gives:

1
K2
r1

[
A
iL

a
(JLK

1a
a

)− Mw

B
B
∂JL(Kr , 1a)

∂r

]
=

1
K2
r3

[
iL

a
(C(JL(Kr3a) + DNL(K3

r a))

−Mw

B
(F
∂JL(K3

r a)
∂r

+ (G
∂NL
∂r

(K3
r a)], (29)

1
K2
r2

[
I
iL

b
H

(1)
L (K3

r b)−
Mw

B
K
∂H

(1)
L (K2

r b)
∂r

]
=

1
K2
r3

[
iL

b
(C(JL(K3

r b) +
Mw

B

DNL(K3
r b)) −

Mw

B
(F
∂JL(K3

r b)
∂r

+G
∂NL(K3

r b)
∂r

)
]
. (30)

Continuity of H∅ in a and b gives:

1
K2
r1

[A
n2

1K
2
L

MwB

∂JL(K1
r a)

∂r
+ B

iL

a
JL(K1

r a)] =
1
K2
r3

n2
3K

2

MwB
(C
∂JL(K3

r a)
∂r

+D
∂NL(K3

r a)
∂r

)

+
iL

a
(FJL(K3

r a) +GNL(K3
r a))], (31)

1043
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1
K2
r2

[I
n2

2K
2

MwB

∂H
(1)
L (K(2)

r b)
∂r

+ K
iL

b
H

(1)
L (K2

r b)] =
1
K2
r3

n2
3K

2

KwB
((
∂JL(K3

r b)
∂r

+D
∂NL(K3

r b)
∂r

+
iL

b
(FJL(K3

r b) +GNL(K3
r b))] (32)

where ∂JL(Kr)
∂r

has been replaced by ∂JL(Ka)
∂r

.
The notation is further simplified by setting u = Kr1a, W = Kr3a, S = Kr3b,

t = Kr2b, JL = J , NL = N , and H
(H)
L = H denotes a derivative with respect to U, W,

S and t, respectively.
The set of equations (24)-(31) yields the coefficient matrix

M(B)=

∣∣∣∣∣∣∣
J(U) 0 −J(W) −N(W) 0 0 0 0

0 0 −J(S) −N(S) 0 0 H(t) 0
0 −J(U) 0 0 −J(W) −N(W) 0 0
0 0 0 0 −J(S) −N(S) 0 H(t)

iIB

U2 J(U) −Mw
U J(U) iIB

W2 J
′(W) −iIB

W2 N(W) Mw
W J1(W) Mw

W N1(W) 0 0

∣∣∣∣∣∣∣
determining the coefficients A, B, C, D, F, G, I, K via

M(B).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A
B
C
D
F
G
I
K

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (33)

The calculation of the determinant of this matrix is very sensitive to round off errors
giving rise to numerical instabilities. This is due to the large imaginary part of Kr2 and
Kr1 representing the strong and nearly exponential damping of radiation that penetrates
the guide surfaces. This imaginary part leads either to extremely large or extremely small
values of JL(Kr1a), HL (Kr2b) and their derivatives. Errors due to the corresponding
extreme coefficients are removed by an asymptotical evaluation of the ratio

H ′(Kr2b)
H(Kr2b)

=
i exp[i(Kr2b− Lπ

2
− π

4
)]

exp[i(Kr2b− Lπ
2
− π

4
)]

= i (34)

This approximation was used earlier by Marcatili deriving the waveguide modes in a
hollow bore waveguide [12, 10].

Since the guide material is absorbing Kr1 is complex with a positive imaginary part,
thus JL(Kr1a) splits into an exponentially decreasing (H(1)

L ) and increasing (H(2)
L ) part:

JL(Kr1a) =
1
2

[
H

(1)
L K(1)

r +H
(2)
L (KL1a)

]
. (35)
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Neglecting the decreasing part one can likewise evaluate the ratio

J1(K1
r a)

J(K1
r a)

=
H

(2)
L (K1

r a)

H
(2)
L (K1

r a)
=
−i exp[−i(K1

r a− Lπ
2
− π

4
)]

exp[−i(K1
r a− Lπ

2
− π/4)]

= −i. (36)

Division of the columns of a determinant does not change its zeros and the asymptotic
approximations (33) and (35) are used to eliminate the undesired coefficients giving the
approximate determinant equation:

0=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 −J(W) −N(W) 0 0 0 0
0 0 −J(S) −N(S) 0 0 1 0
0 1 0 0 −J(W) −N(W) 0 0
0 0 0 0 −J(S) −N(S) 0 1
iLB

U2
iMW
U

iLB

W2 J(W) −iLB
W 2 N(W) MW

W W1(W) MW
W N1(W) 0 0

0 0 −iLB
W2 J(S) −iLB

S2 N(S) MW
S J1(S) iLB

W2 N(S) iLB

t2
−iMW

t

in2
L
K2

MWU
iLB

U2
n2K2
MWW J1(W)

n2
3

MWW N1(W) iLB

W2 J(W) iLB

W2 N(W) 0 0

0 0
n2

3K
2

MWS J
1(S)

n2
3K

2

MWSN
1(S) iLB

S2 J(S) iLB
S2 N(S)

n2
3K

2

MWt
−iLB
t2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(37)

3. Discussion and Conclusion

In the present work have investigated a theoretical resonator model based on the
vector modes of propagation in a dielectric coaxial waveguide. High-power diffusion
cooling planar waveguide CO2 laser is described theoretically.
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