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Abstract

The wave functions and energy spectrum of electrons in size-quantized n-Ge and
n-Si films are obtained and the anisotropy of the electron state density is investi-
gated. Also, the analytical expressions for the electronic part of heat capacity at
the various approximations of electron gas degeneration are obtained.

1. Introduction

Recently, there has been growing interest in the study of physical properties of con-
ducting films in the size-quantized conditions connected with microelectronics develop-
ment. In this case the specimen sizes are of the de Broglie wave length of the current
carriers, a scale at which quantum-size effects occur. If one or two specimen sizes limited
the quasi-discrete nature of energy spectrum, the wave functions form changed. The
influence of such size quantization on the current carrier’s behavior is also naturally af-
fected. This problem for conducting films with standard zone (simple isotropic model)
has been considered by some authors, for example, in works [1-3]. As to anisotropic
semiconducting films of n-Ge and n-Si type, it is assumed additional anisotropic effects
appear due to film finite thickness.

2. Energy spectrum

As it is known, the energy spectra of n-Ge and n-Si are anisotropic. The isoenergetic
surfaces near the minimum of conducting zone are rotational ellipsoids with axis of rota-
tion directed along the [111] axis for n-Ge and along the [100] axis for n-Si. The energy
spectra near each minimum take the form:
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ε( ~K′) =
h̄2

2

(
K′2x +K′2y

m⊥
+
K′2z
m‖

)
, (1)

where m‖ and m⊥ are longitudinal and transverse effective electron masses, respectively.
In the following it is necessary to make transformation of expression (1) into the one

for the system of reference connected to the film with surface of arbitrary orientation
with respect to the crystallographic axis’s. The spectrum obtained in the new system of
reference can be written as:

εs( ~K) =
h̄2

2
m−1
αβ(s)KαKβ , (2)

where α, β = 1, 2, 3; S is the ellipsoid number, m−1
αβ(s) is the tensor of inverse effective

electron masses in the new system of reference.
To solve the Schrodinger equation in the effective masses tensor approximation (when

~K → −i~∇) we assume that the film is represented as a rectangular potential pit with
plane bottom and infinitely high walls:

U(z) =
{

0, 0 < z < d
∞, z < 0 and z > d,

(3)

where d is the film thickness and on the (xy)-plane U(x, y) = const.
Then for the wave functions and energy spectrum the following expressions are ob-

tained:

Ψ(s)
nsKxKy

(X, Y, Z) =
(

2
L1L2d

)1/2

sin
nsπ

d
z exp[i(KxX +KyY )]×

exp

[
−i
(
m−1

13(s)Kx + m−1
23(s)Ky

m−1
33(s)

)
Z

]
, (4)

εs(ns, Kx, Ky) =
h̄2

2
m−1

33(s)

(π
d

)2

n2
s +

h̄2

2
m̄−1
γδ(s)

KγKδ, (5)

where γ, δ = 1, 2;L1 and L2 are the corresponding sizes of the film basic domain on
(xy)-plane, ns = 1, 2, 3, . . . is the sized quantum number, while m̄−1

γδ(s) has the form:

m̄−1
γδ(s) = m−1

γδ(s) −
m−1
γ3(s)m

−1
δ3(s)

m−1
33(s)

. (6)

One can represent expression (5) in the main ellipsoid axis’s in the form:

εs(ns, Kx, Ky) =
h̄2π2

2m‖d2
f(θs)n2

s +
h̄2

2m⊥

[
f−1(θs)K2

x + K2
y

]
, (7)
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where θs is the angle between axis of rotation of the each ellipsoid and a normal to the
film surface; f(θs) = 1 + (γ − 1) sin2 θs; and γ = m‖

m⊥
is the coefficient of anisotropy.

Thus the electron state in the size-quantized n-Ge and n-Si films is essentially anisotropic,
that is, reflected on discrete and quasicontinuous parts of energy spectrum.

3. State density

From expression (7) we can obtain the electron state density in the form:

gf =
m⊥

πdh̄2

N∑
s=1

{
f1/2(θs)n̄s

}
, (8)

where n̄s =
[√

εs
ε1s

]
is the integer part of number

√
εs
ε1s
, ε1s = εs(ns = 1, Kx = Ky = 0), N = 4 for n-Ge

and N=6 for n-Si.
For the fixed film thickness gf is independent of energy until the value

√
εs
ε1s

changes by
less than unity. In this case, the leap of state density occurs and therefore its dependence
on energy has a step-like character.

At the fixed energy εs the state density is dependent on film thickness ∼ 1/d until
the value

√
εs
ε1s

changes by less than unity. In this case, the leap of state density occurs
again and therefore its dependence on film thickness exhibits a sawtoothed character.

Let us fix the initial film surface as the (001) surface. We will rotate the film normal
by angle α around one of the crystallographic axis. We obtain for the state density:

gf(α) =
m⊥

πdh̄2

N∑
s=1

{ϕs(α)n̄s} . (9)

With rotation of the film normal around the [100] axis the ϕs(α) functions for n-Ge
assume the form

ϕ1,2(α) =
1√
3

[1 + 2γ + (1− γ) sin 2α]1/2 ,

ϕ3,4(α) =
1√
3

[1 + 2γ + (γ − 1) sin 2α]1/2 , (10)

and for n-Si we have

ϕ1,2(α) =
[
1 + (γ − 1) sin2 α

]1/2
,

ϕ3,4(α) =
[
γ + (1− γ) sin2 α

]1/2
,

ϕ5,6 = γ1/2. (11)

1049



KULIEV, GADJIEV

With rotation of the film normal around the [110] axis the ϕs(α) functions for n-Ge
have form

ϕ1,2(α) =
[
1 + (γ − 1) sin2

(
α± arccos

1√
3

)]1/2

,

ϕ3,4(α) =
[
1 +

(γ − 1)
3

(
2 + sin2 α

)]1/2

, (12)

and for n-Si we have

ϕ1,2(α) =
[
1 + (γ − 1) sin2 α

]1/2
,

ϕ3,6(α) =
[
γ +

(1− γ)
2

sin2 α

]1/2

, (13)

From expressions (9)-(13) we can obtain the electron state density expressions with
the normal directed along the [001], [011] and [111] axis, respectively.

Indeed, for n-Ge, we have

g
(001)
f =

4m⊥√
3πdh̄2

(2γ + 1)1/2
n̄,

g
(011)
f =

2m⊥
πdh̄2

{(
γ + 2

3

)1/2

n̄1 + γ1/2n̄2

}
,

g
(111)
f =

m⊥

πdh̄2

{
n̄1 + (8γ + 1)1/2

n̄2

}
, (14)

and for n-Si we obtain

g
(001)
f =

2m⊥
πdh̄2

{
n̄1 + 2γ1/2n̄2

}
,

g
(011)
f =

2m⊥
πdh̄2

{
γ1/2n̄1 + (2γ + 2)1/2 n̄2

}
,

g
(111)
f =

2
√

3m⊥
πdh̄2

(2γ + 1)1/2 n̄. (15)

As it is shown from above mentioned expressions (14) and (15), the state density
depends essentially on film surface orientation, i.e. state density posses so-called size-
quantized anisotropy. For bulk specimen this anisotropy, evidently, vanishes.

4. Electron heat capacity

Having knowledge of the energy spectrum of electrons in the size-quantized film it
is possible to calculate concrete thermodynamic functions of the system. Let us show

1050



KULIEV, GADJIEV

here expressions for the electronic part of the heat capacity for various approximations
of electron gas degeneration. For arbitrary degenerated electrons we obtain:

Cf(α) =
m⊥K

2
0T

πdh̄2

N∑
s=1

{
ϕs {α)

∑
ns

[
Xns

(
F1(ηns) + T

∂F1(ηns
∂T

)
+

+ F2(ηns) +
T

2
∂F2(ηns)
∂T

]}
, (16)

where F1(ηns) and F2(ηns) are the uniparametric Fermi integrals, ηns = η −Xns, η is a
reducible chemical potential, Xns is a reducible discrete energy of spectrum (7).

From here, with the strongly degenerated electron gas approximation, we have:

Cf(α) =
m⊥πK

2
0T

3dh̄2

N∑
s=1

{ϕs(α)n̄s} =
(πK0)2T

3
gf (α). (17)

It is evident from this case the heat capacity has the same character for state density
and posses size-quantized anisotropy.

Let us show here the heat capacity expressions for ultrathin n-Ge and n-Si degenerated
films (when only one subband is filled) with definite orientations of their surface and
compare them with the corresponding heat capacity Cm for bulk specimen. For n-Ge we
obtain:

C
(001)
f = Cm

{
1 +

γd3ne

2π
(

2γ+1
3

)3/2
}−1/2

,

C
(011)
f =

1
2
Cm

{
1 +

γd3ne

π
(
γ+2

3

)3/2
}−1/2

,

C
(111)
f =

1
4
Cm

{
1 +

2γd3ne
π

}−1/2

, (18)

where ne is a concentration of electrons in film.
The analogous calculations for n-Si give us:

C
(001)
f =

1
3
Cm

{
1 +

γd3ne
π

}−1/2

,

C
(011)
f =

2
3
Cm

{
1 +

√
2γd3ne

π (γ + 1)3/2

}−1/2

,

C
(111)
f = Cm

{
1 +

√
3γd3ne

π (2γ + 1)3/2

}−1/2

. (19)
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The analysis of expressions (18) and (19) for Cf shows that depending on ultrathin
film surface orientation the contributions into the heat capacity give different number of
ellipsoids. Only at the definite film surface orientations (C(001)

f for n-Ge and C(111)
f for n-

Si) the heat capacity of electron gas conditioned by all ellipsoids. It is also a consequence
of the energy spectrum anisotropy in n-Ge and n-Si films.

For the nondegenerated electron gas from (16) we obtain:

Cf(α) = K0ne

N∑
s=1

{
ϕs(α)

∑
ns

[
1 + (1 + Xns)

(
1 + Xns− `n πdh̄2ne

m⊥K0TA(α)

)]
×

exp(−Xns)
A(α)

}
, (20)

where A(α) =
N∑
s=1

{
ϕs(α)

∑
ns

exp(−Xns)
}

.

As it is shown in this case, heat capacity also depends on film surface orientation. But
Cf (α) behavior in nondegenerated n-Ge and n-Si films become more complicated than in
degenerated films.

References

[1] V. B. Sandomirsky, J. Eksp. I Teor. Fiziki, 52 (1967) 158 (in Russian).

[2] B. A. Tavger, V. N. Demihovsky, Uspehi Fiz. Nauk, 96 (1968) 61 (in Russian).

[3] B. M. Askerov, Electron Transport Phenomena in Semiconductors, World Scientific, Sin-
gapore (1994) 374.

1052


