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Abstract

This study gives a mean field model with two order parameters for three-phase
coexistence near the multicritical point. The critical exponents calculated from
our model are the tricritical exponents for the order parameters, susceptibility and
the specific heat. Hence, our mean field model describes adequately the tricritical
behaviour of a system in the region of three-phase coexistence.

1. Introduction

The mean field theory of symmetrical and unsymmetrical tricritical points with one
order parameter for three-phase coexistence has been studied by Griffiths [1]. He applied
his theory to fluid mixtures [1] and liquid mixtures [2]. Similar treatment with one order
parameter has been applied to liquid crystals for the nematic-smectic A tricritical phase
transition [3,5].

It has been suggested in the literature that one can study a system exhibiting three dif-
ferent phases with two order parameters. Those systems are, for example, liquid crystals
with the nematic, smectic A and smectic C phases near the NAC point [6-9]; a ferroelec-
tric system such as sodium nitrite with the paraelectric, incommensurate and ferroelectric
phases [10]; ferroelectric liquid crystals with the paraelectric and anti-ferroelectric phases
[11], and the ammonium halides with the disordered β, anti-ferroordered γ and ferro-
ordered δ phases [12].

In this study we have extended Griffiths theory with one order parameter to a mean
field model with two order parameters for three-phase coexistence near the multicritical
point. The free energy we give in this study has the most general form that one can obtain
from a system with three different phases. From this form of free energy we calculate the
critical exponents for the order parameters, susceptibility and the specific heat. It turns
out that these critical exponents are the tricritical exponents. In Section 2 we give the
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form of the free energy of our model and we calculate the critical exponents. In Section 3
we give a brief discussion of our calculations. Finally in Section 4 we give our conclusions.

2. Theory

In this section we study a mean field model for three-phase coexistence near the
multicritical point. We assume that the system is characterized with two order parameters
Ψ and η.

The free energy of our model has three components. The contribution due to the first
order parameter Ψ is given by

F1 = (Ψ−Ψα)(Ψ−Ψβ)(Ψ−Ψγ)4

+ (Ψ−Ψα)(Ψ−Ψβ)2(Ψ− Ψγ)3

+ (Ψ−Ψα)(Ψ−Ψβ)3(Ψ− Ψγ)2

+ (Ψ−Ψα)(Ψ−Ψβ)4(Ψ− Ψγ)
+ (Ψ−Ψα)2(Ψ−Ψβ)(Ψ− Ψγ)3

+ (Ψ−Ψα)2(Ψ−Ψβ)2(Ψ− Ψγ)2

+ (Ψ−Ψα)2(Ψ−Ψβ)3(Ψ− Ψγ)
+ (Ψ−Ψα)3(Ψ−Ψβ)(Ψ− Ψγ)2

+ (Ψ−Ψα)3(Ψ−Ψβ)2(Ψ− Ψγ)
+ (Ψ−Ψα)4(Ψ−Ψβ)(Ψ− Ψγ) (1a)

The contribution to the free energy from the order parameter η is given by

F2 = (η − ηα)(η − ηβ)(η − ηγ)4

+ (η − ηα)(η − ηβ)2(η − ηγ)3

+ (η − ηα)(η − ηβ)3(η − ηγ)2

+ (η − ηα)(η − ηβ)4(η − ηγ)
+ (η − ηα)2(η − ηβ)(η − ηγ)3

+ (η − ηα)2(η − ηβ)2(η − ηγ)2

+ (η − ηα)2(η − ηβ)3(η − ηγ)
+ (η − ηα)3(η − ηβ)(η − ηγ)2

+ (η − ηα)3(η − ηβ)2(η − ηγ)
+ (η − ηα)4(η − ηβ)(η − ηγ). (1b)

The third contribution to the free energy due to the coupling between two order param-
eters Ψ and η is given by

F3 = (Ψ−Ψα)(Ψ−Ψβ)(Ψ−Ψγ)(η − ηα)(η − ηβ)(η − ηγ). (1c)
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Hence, the free energy of our model is

F = F1 + F2 + F3. (1d)

Here we denote the three phases as α, β and γ. Ψα, Ψβ and Ψγ are the values of the
order parameter Ψ in the phases α, β and γ, respectively. Also ηα, ηβ and ηγ are the
values of the order parameter η in the phases α, β and γ, respectively. This free energy
is equal to zero when Ψ = Ψα and η = ηα for the α phase; Ψ = ψβ and η = ηβ for the
β phase; and Ψ = Ψγ and η = ηγ for the γ phase. Therefore, this free energy is valid in
the region of three-phase coexistence.

This free energy given in Eq.(1d) can be rewritten as

F = a0 + a1Ψ + a2Ψ2 + a3Ψ3 + a4Ψ4 + a5Ψ5 + a6Ψ6

+ b1η + b2η
2 + b3η

3 + b4η
4 + b5η

5 + b6η
6

+ c1Ψη + c2Ψ2η + c3Ψη2 + c4Ψ2η2 + c5Ψ3η (2)
+ c6Ψη3 + c7Ψ2η3 + c8Ψ3η2 + c9Ψ3η3.

Here, the coefficients ai(i = 1, 2, 3, 4, 5, 6), bi(i = 1, 2, 3, 4, 5, 6) and ci(i = 1, 2, 3, 4, 5, 6, 7, 8, 9)
in terms of Ψi, ηi (i = α, β, γ) are given in Appendix A. As we see from Eq.(A5), a5 is
linearly proportional to Ψi. We assume that the temperature dependence of a5 is

a5 = a50(T − Tc)x.

Here, Tc denotes the critical temperature. From the Landau theory, the temperature
dependence of a2 should be

a2 = a20(T − Tc).

Therefore, from Eqs.(A2) and (A5) we conclude that the power x should be 1/4. Hence,
using Eqs.(A0-A6) the temperature dependence of the ai’s should be as follows:

a0 ∼ |T − Tc|3/2 ,
a1 ∼ |T − Tc|5/4 ,
a2 ∼ |T − Tc| ,
a3 ∼ |T − Tc|3/4 ,
a4 ∼ |T − Tc|1/2 ,
a5 ∼ |T − Tc|1/4 . (3)

Similarly, using Eqs.(A7-A12) the temperature dependence of the bi’s are given below:
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b1 ∼ |T − Tc|5/4

b2 ∼ |T − Tc|
b3 ∼ |T − Tc|3/4

b4 ∼ |T − Tc|1/2

b5 ∼ |T − Tc|1/4 (4)

Using Eqs.(A13-A21) the temperature dependence of the coefficient ci’s can be found as

c1 ∼ |T − Tc|
c2 ∼ |T − Tc|3/4

c3 ∼ |T − Tc|3/4

c4 ∼ |T − Tc|1/2

c5 ∼ |T − Tc|1/2

c6 ∼ |T − Tc|1/2

c7 ∼ |T − Tc|1/4

c8 ∼ |T − Tc|1/4 . (5)

Since Ψi and ηi are linearly dependent on a5 and b5, respectively, the temperature de-
pendences of the order parameter Ψi and ηi are given as

Ψi ∼ |T − Tc|β (6)

and
ηi ∼ |T − Tc|β , (7)

where the critical exponent for the order parameter is β = 1/4.
Now, we want to find the critical exponent γ for the susceptibility χ. For this purpose

we write the definition of the susceptibility χi (i = α, β, γ) as

χ−1
i = (

∂2F

∂Ψ2
)Ψ = Ψi

η=ηi

(8)

From Eqs.(2) and (9), we find χi as

χ−1
i = 2a2 + 6a3Ψi + 12a4Ψ2

i + 20a5Ψ3
i

+ 30a6Ψ4
i + 2c2ηi + 2c4η2

i + 6c5Ψiηi (9)
+ 2c7η3

i + 6c8Ψiη
2
i + 6c9Ψiη

3
i .
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Using Eqs.(4), (5), (6), (7) and (8), each term in Eq.(10) has the temperature dependence
as

χ−1
i ∼ (T − Tc)

or
χi ∼ (T − Tc)−1 (10)

Since the susceptibility behaves as

χi ∼ (T − Tc)−γ

we have the critical exponent for the susceptibility as γ = 1.
The susceptibility χ′i(i = α, β, γ) can also be defined as

χ′−1
i = (

∂2F

∂η2
)Ψ = Ψi

η=ηi

. (11)

From Eqs.(2) and (12), we find χ′i as

χ′−1 = 2b2 + 6b3ηi + 12b4η2
i + 20b5η3

i

+ 30b6η4
i + 2c3Ψi + 2c4Ψ2

i

+ 6c6Ψiηi + 2c8Ψ3
i + 6c7ηiΨ2

i (12)
+ 6c9ηiΨ3

i .

Using Eqs. (4), (5), (6), (7) and (8), each term in Eq.(13) has the temperature dependence
as

χ′−1
i ∼ (T − Tc). (13)

Therefore, the critical exponent for this susceptibility is also γ = 1.
Now, we want to find the critical exponent α for the specific heat C. Using Eqs. (4),

(5), (6), (7) and (8), each term in the free energy given by Eq.(2) has the temperature
dependence as

F = A(T − Tc)3/2, (14)

where A is a constant. Hence, we have

C = T (
∂2F

∂T 2
)|T=Tc =

3
4
ATc(T − Tc)−1/2. (15)

Since the temperature dependence of the specific heat can be expressed using the power
law as

C ∼ (T − Tc)−α (16)
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from Eq.(16) we have α = 1
2 .

3. Discussion

In this study we give the form of the free energy (Eq.1d) with two order parameters
Ψ and η to describe the multicritical behaviour of a system in the region of three-phase
coexistence. The form of the free energy we give in Eq(1d) is the most general form
that one can obtain for a system of three-phase coexistence. As in the Landau theory,
the temperature dependences of a2 and b2, which are the coefficients of Ψ2 and η2,
respectively, as given in Eq.(2), were taken as

a2 = a20(T − Tc)
and

b2 = b20(T − Tc).
Using these temperature dependences of the coefficients, we predicted the critical be-

haviour of the order parameters Ψ and η, susceptibility χ and the specific heat C. The
critical exponents that we calculated from our model turned out to be the tricritical expo-
nents. This shows that our mean field model which has the free energy given by Eq.(1d),
describes the critical behaviour of those systems exhibiting the three-phase coexistence
near the tricritical point. As an example, we have used this mean field model to describe
the tricritical behaviour of nematic, smectic A and smectic C phases of liquid crystals
near the NAC point [13]. Our mean field model can also be used to describe the tricritical
behaviour of those systems such as ferroelectric systems, ferroelectric liquid crystals and
ammonium halides, which exhibit three-phase coexistence.

Conclusions

In this study we have developed a mean field model with two order parameters for
those systems exhibiting three-phase coexistence near the multicritical point. Using our
model we have calculated the critical exponents for the order parameters, susceptibility
and the specific heat. And these exponents are the tricritical exponents. Therefore, our
mean field model can be used to describe the tricritical behaviour of a system in the
region of three-phase coexistence.

Appendix A

If we expand Eq.(1d) we obtain Eq.(2) with the coefficients ai, bi, and ci as follows:

a0 = Ψ4
αΨβΨγ + Ψ3

αΨ2
βΨγ + Ψ2

αΨ3
βΨγ

+ ΨαΨ4
βΨγ + Ψ3

αΨβΨ2
γ + Ψ2

αΨ2
βΨ2

γ

+ ΨαΨ3
βΨ2

γ + Ψ2
αΨβΨ3

γ + ΨαΨ2
βΨ3

γ

+ ΨαΨβΨ4
γ + ΨαΨβΨγηαηβηγ (A0)
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+ η4
αηβηγ + η3

αηβη
2
γ + η2

αη
3
βηγ

+ ηαη
4
βηγ + η3

αηβη
2
γ + η2

αη
2
βη

2
γ

+ ηαη
3
βη

2
γ + η2

αηβη
3
γ + ηαη

2
βη

3
γ

+ ηαηβη
4
γ

a1 = −Ψ4
αΨβ −Ψ3

αΨ2
β −Ψ2

αΨ3
β − ΨαΨ4

β

− Ψ4
αΨγ − Ψ3

αΨ2
γ − Ψ2

αΨ3
γ −ΨαΨ4

γ

− Ψ4
βΨγ −Ψ3

βΨ2
γ −Ψ2

βΨ3
γ −ΨβΨ4

γ

− 8ΨαΨ2
βΨ2

γ − 8ΨαΨβΨ3
γ − 8ΨαΨ3

βΨγ (A1)

− 8Ψ2
αΨβΨ2

γ − 8Ψ2
αΨ2

βΨγ − 8Ψ3
αΨβΨγ

− ΨαΨβηαηβηγ − ΨαΨγηαηβηγ

− ΨβΨγηαηβηγ

a2 = Ψ4
α + Ψ4

β + Ψ4
γ + 7ΨαΨ3

β + 7ΨαΨ3
γ

+ 7ΨβΨ3
γ + 7Ψ2

αΨ2
β + 7Ψ2

βΨ2
γ + 7Ψ2

αΨ2
γ

+ 7Ψ3
αΨβ + 7Ψ3

αΨγ + 7Ψ3
βΨγ (A2)

+ 28ΨαΨβΨ2
γ + 28ΨαΨ2

βΨγ + 28Ψ2
αΨβΨγ

+ Ψαηαηβηγ + Ψβηαηβηγ + Ψγηαηβηγ

a3 = −6Ψ3
α − 6Ψ3

β − 6Ψ3
γ − 21ΨαΨ2

β − 21Ψ2
αΨβ

−21ΨαΨ2
γ − 21Ψ2

αΨγ (A3)

−21ΨβΨ2
γ − 21Ψ2

βΨγ − 56ΨαΨβΨγ

−ηαηβηγ

a4 = 15Ψ2
α + 15Ψ2

β + 15Ψ2
γ + 35ΨαΨβ + 35ΨαΨγ + 35ΨβΨγ (A4)

a5 = −20Ψα − 20Ψβ − 20Ψγ (A5)

a6 = 10 (A6)
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b1 = −η4
αηβ − η3

αη
2
β − η2

αη
3
β − ηαη4

β

− η4
αηγ − η3

αη
2
γ − η2

αη
3
γ − ηαη4

γ

− η4
βηγ − η3

βη
2
γ − η2

βη
3
γ − ηβη4

γ

− 8ηαη2
βη

2
γ − 8ηαηβη3

γ − 8ηαη3
βηγ (A7)

− 8η2
αηβη

2
γ − 8η2

αη
2
βηγ − 8η3

αηβηγ

− ηαηβΨαΨβΨγ − ηαηγΨαΨβΨγ

− ηβηγΨαΨβΨγ

b2 = η4
α + η4

β + η4
γ + 7ηαη3

β + 7ηαη3
γ

+ 7ηβη3
γ + 7η2

αη
2
β + 7η2

αη
2
γ + 7η2

βη
2
γ

+ 7η3
αηβ + 7η3

αηγ + 7η3
βηγ (A8)

+ 28ηαηβη2
γ + 28ηαη2

βηγ + 28η2
αηβηγ

+ ηαΨαΨβΨγ + ηβΨαΨβΨγ + ηγΨαΨβΨγ

b3 = −6η3
α − 6η3

β − 6η3
γ − 21ηαη2

β − 21η2
αηβ

− 21ηαη2
γ − 21η2

αηγ − 21ηβη2
γ − 21η2

βηγ (A9)
− 56ηαηβηγ − ΨαΨβΨγ

b4 = 15η2
α + 15η2

β + 15η2
γ + 35ηαηβ (A10)

+ 35ηαηγ + 35ηβηγ

b5 = −20ηα − 20ηβ − 20ηγ (A11)

b6 = 10 (A12)

c1 = ΨαΨβηαηβ + ΨαΨβηαηγ

+ ΨαΨβηβηγ + ΨαΨγηαηβ

+ ΨαΨγηαηγ + ΨαΨγηβηγ (A13)
+ ΨβΨγηαηβ + ΨβΨγηαηγ

+ ΨβΨγηβηγ
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c2 = −Ψαηαηβ − Ψαηαηγ − Ψαηβηγ

− Ψβηαηβ −Ψβηαηγ − Ψβηβηγ (A14)
− Ψγηαηβ −Ψγηαηγ − Ψγηβηγ

c3 = −ηαΨαΨβ − ηαΨαΨγ − ηαΨβΨγ

− ηβΨαΨβ − ηβΨαΨγ − ηβΨβΨγ (A15)
− ηγΨαΨβ − ηγΨαΨγ − ηγΨβΨγ

c4 = Ψαηα + Ψαηβ + Ψαηγ + Ψβηα + Ψβηβ (A16)
+ Ψβηγ + Ψγηα + Ψγηβ + Ψγηγ

c5 = ηαηβ + ηαηγ + ηβηγ (A17)

c6 = ΨαΨβ + ΨαΨγ + ΨβΨγ (A18)

c7 = −Ψα − Ψβ −Ψγ (A19)

c7 = −ηα − ηβ − ηγ (A20)

c9 = 1. (A21)
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