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Abstract

In the framework of the three-body approach the A(a, bc)A Coulomb breakup
has been investigated. The three-body Coulomb dynamic is taken into account to
derive the expression for the reaction matrix element. The mechanism of the breakup
includes the direct process and the excitation of resonance state of the particle a. The
calculation of the triple differential cross section of the 208Pb(6Li, αd)208Pb Coulomb
dissociation have been performed in the energy region Eαd < 1MeV . Calculations
for the Coulomb dissociation 208Pb(6Li, αd)208Pb, including consideration of the
triple cross section going through the first resonance of 6Li have been performed.
The results of the calculations are compared with experimental data.

1. Introduction

From theoretical and experimental investigations there is now the extensive informa-
tion for the Coulomb breakup of light nuclei on heavy ions [1-5]. Similar studies have
been stimulated by the opportunity to extract the astrophysical S-factor. However, there
is the question of the influence of the three-body Coulomb dynamic on the energy de-
pendence of the differential cross section in the final and intermediate states [6-9]. In
addition, the reaction going through resonance close to threshold has attracted special
attention. Influence of the three-body Coulomb effects on the energy dependence of the
differential cross section near resonance was investigated in Ref. [6]. However, in the final
expression the Coulomb interaction in an asymptotic approach was carried out in Ref.[8]
for reactions A(x, cy)B. In that investigation the analytical formula describing the influ-
ence of the Coulomb interaction between the spectator-particle and the resonance in the
intermediate state and the Coulomb rescattering of three particles in the final state to the
absolute value of the differential cross section is obtained. In Ref.[9] for a short-lifetime
resonance the contribution of the polarization potential in the eikonal approach is taken
into account. The authors of Ref.[4] note that there is some quantitative suppression of
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the acceleration of particles in the final state when a projectile transits to a resonance
state of narrow width. Such conclusion demands careful analysis. The investigation of
the E1 and E2 electric transitions for the Coulomb dissociation of nuclei is of special
interest for the case when the E1 transition is suppressed accordingly to the isotopic spin
[10].

In the present work the Coulomb dissociation of a light particle in the field of a
heavy multicharged ion is investigated. Concrete numerical calculations are reported for
the reaction 208Pb(6Li, αd)208Pb. The results of the calculations are compared with the
experimental data from Ref.[2].

2. The general formula

Let us consider the reaction in the framework of a model of charged particles 1, 2 and
3,

(12) + 3→ (12)∗ + 3→ 1 + 2 + 3, (1)

where (12) is a bound state of particles 1 and 2. This reaction can go directly and through
resonance state (12)∗. As the Coulomb effects do not depended on spin, the particles are
considered spinless. We use the following notation for indices;α = 1, 2 and 3, where i
denotes pair (jk). We make the further assumption that the particles are structureless.
Such application can be used in the framework of the cluster model. The amplitude of
the Coulomb transition for reaction (1) can be written down in the form

M =< Ψ(−)
f |∆V |Φ

(+)
i >, (2)

Here, Φ(+)
i is the wave function of the initial state; Ψ(−)

f is the wave function of the

final state; ∆V = V C1 + V C2 − UCi is the transition potential; UCi = (Z1+Z2)Z3e
2

R
is the

Coulomb “optical” potential of the interaction between particle 3 and the center of mass
of pair (12);Z1, Z2 and Z3 are charges of particles 1, 2 and 3, respectively, V C1 , V C2 are
the long-range Coulomb potentials

V C1 =
Z2Z3e

2

| ~R+ m1
m12

~r|
, V C2 =

Z1Z3e
2

| ~R− m2
m12

~r|
, (3)

where ~R is the radius-vector of the relative motion of particle 3 and the center of mass
of particles 1 and 2, ~r is a radius-vector describing the relative motion of particles 1 and
2, m1(m2) is the mass of particle 1 (2) and m12 = m1 +m2.

The wave function Ψ(−)
f of the final state can be taken in the form

Ψ(−)
f = Ψ(−)

C + G(E − i0)V N3 Ψ(−)
C , (4)

where G(E − i0) is the complete Green function, Ψ(−)
C is the three-body Coulomb wave

function of the continuum spectrum describing motion of particles 1, 2 and 3 in the final
state, V N3 is the potential of the nuclear interaction between particles 1 and 2.

1140



IRGAZIEV, ERGASHBAEV

The wave function Φ(+)
i is a solution of the equation:

[− 1
2µ12

∆r −
1

2µ3
∆R + V3(~r) + Ui(~R)]Φ(+)(~r, ~R) = (Ei − ε12)Φ(+)(~r, ~R), (5)

where µ12 = m1m2/m12, µ3 = m3m12/(m3 +m12), ε12 is the binding energy of the system
(12) and Ei is the energy of the projectile.

Substituting expression (3) into formula (2) we receive:

M =< Ψ(−)
C |∆V |Φ

(+)
i > + < Ψ(−)

C |V
N
3 G(E + i0)∆V |Φ(+)

i >, (6)

The first term of (4) corresponds to the direct process, while the second term describes
the reaction going through resonance.

Using the procedure described in Ref.[8, formula (14)] we obtain the expression for
the resonance term of process (1):

Mr =
∫

d~k

(2π)3

< Ψ(−)
C |V N3 |ϕ3rΨ

(−)

3~k
>< Ψ(−)

3~k
ϕ̃3r|∆V |Φ(+)

i >

E − k2/2µ3 − Er
. (7)

Here, < Ψ(−)
3k ϕ̃3r|∆V |Φ(+)

i > is the transition amplitude to the resonance state (12)∗

with taking into account the Coulomb scattering of particle 3 and resonance (12)∗ in the
intermediate state; ϕ3r is the wave function of the resonance in system (12) (the Gamov
function); ϕ̃3r is the conjugate wave function of the resonance; Ψ(−)

3~k
is the Coulomb wave

function in the continuum describing the relative motion of particle 3 and the center of
mass of pair (12) with relative energy k2/2µ3; wave function Φ(+)

i is a product of wave
function ϕ3 of the bound state of pair (12) and the Coulomb wave function Ψ(−)

3~ki
, which

describes the continuum of the relative motion between particle 3 and pair (12) in the
initial state; Er = E0 − iΓ/2 is the resonance energy in system (12); and E0 and Γ
are parameters of the resonance. In amplitude (5), only one resonance is chosen and
summation by projection of the orbital moment lr is used.

The matrix element < Ψ(−)
C |V N3 |ϕ3rΨ

(−)

3~k
> responds to decay of resonance state

(12)∗ → 1 + 2 when the Coulomb interaction in the final state is into account, and
it can be connected with the vertex function of decay of resonance (12)∗ → 1 + 2 in
the Coulomb field of particle 3 [8]. As wave function ϕ3(~r) of the bound pair is an
exponentially decreasing function, in integration with respect to r in the first matrix
element of Eq.(4) and the second matrix element of Eq. (5), we limit r in the range
r ∼ 1/κ12, where κ12 = (2ε12µ12)1/2. Therefore the potential of the transition can be
expanded in a power series in r/R:

∆V = Z3e
2
∞∑
l,m

4π
(2l+ 1)

rl

Rl+1

[(
m2

m12

)l
Z1 + (−1)l

(
m2

m12

)l
Z2

]
Y ∗lm(R̂)Ylm(r̂), (8)

where b̂ = ~b/b.
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In integration with respect to ~R the lower limit will be taken to be more than the sum
of the radiuses of system (12) and particle 3, the Coulomb functions Ψ(+)

3~ki
(~R),Ψ(−)

3~k
(~R)

can be taken in the asymptotic expressions:

Ψ(+)

3~ki
(~R) ≈ exp(i~ki ~R + iηi ln(kiR− ~ki ~R)), (9)

Ψ(−)

3~k
(~R) ≈ exp(i~k ~R− iη ln(kR+ ~k ~R)), (10)

where ηi = Z3Z12e
2µ3/ki, η = Z3Z12e

2µ3/k. Z12 = Z1 + Z2, ~ki(~k) is the momentum of
the relative motion of system (12) and particle 3 in the initial (intermediate) state.

Further we use the approximate calculation procedure of the integral with respect to
k in matrix element (5) describing in Ref. [8]. Omitting rather cumbrous calculation
we write down the final result, which is analogous to formula (31) from Ref.[8] for the
resonance term of amplitude (5).

Mr = −GrM3(~kf , ~ki)
ε− iΓ/2 Ñ(ε), (11)

where ~kf is the momentum of the relative motion of system (12) and particle 3 in the
final state,

Ñ(ε) =
exp[−1

2π(η13 + η23 + η0)]Γ(1 + iξ)k(ε)
[2µ3(ε− iΓ/2)]iξ

(12)

Here

ε = k2
f/2µ3 −E +E0, (13)

k(ε) =
√

2[2γ̃]iη13[2(α̃+ β̃]iη23

[(1 + γ2)1/4 + (1 + γ2)−1/4]1/2
× (14)

× Γ(1 + iη13)Γ(1 + iη23)
Γ[1 + i(η13 + η23)](2k0)2iη0

F (−iη13,−iη23; 1;ω), (15)

k2
0 = 2µ3(E − Er), Er = E0 − iΓ/2 = q2

r/2µ12 is the resonance energy of system (12),
γ = Γ/2E0,

Gr =

√
2πΓ
µ12q0

exp[−1
2πηr −

1
4 iarctanγ]

[(1 + γ2)1/4 + (1 + γ2)−1/4]1/2
(16)

is the vertex constant for decay (12)∗ → 1 + 2,

q0 =
√

2µ3E0, ηij = ZiZje
2µij/kij,
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ηr = Z1Z2e
2µ12/qr, η0 = Z3Z12e

2µ3/q0,

ω = (β̃γ̃ − α̃δ̃)/γ̃(α̃+ β̃), α̃ = (k2
f − k2

0)/2, β̃ = −(~k23
~kf + k23kf),

γ̃ = −(~k13
~kf − k13kf) + α̃, δ̃ = ~k13

~k23 − k23k13 + β̃,

ξ = η13 + η23 − η0,

F (a, b, c; x) is the hypergeometric function
The expression M3(~kf , ~ki) for the electrical quadrupole transition E2 has the form

M3(~kf , ~ki) =
√

2(2π)3/2µ2
12

[
Z1

m2
1

+
Z2

m2
2

]
Z3e

2

∫ ∞
r0

χ3r(r)r4χ3dr∫ ∞
R>Rmin

∫ θmax

θmin

1
R

exp[i(ki cos θ − kf)R cos θR + 2iηf ln(kfR sin ΘR]×,

×J0(kiR sin θ sin θR)P2(cos θR) sin θRdθRdR, (17)

where χ3r(r), χ3(r) are the radial parts of the resonance wave functions of (12)∗ and

bound state (12), respectively; cos =
~ki~kf

|~ki||~kf |
; θR is the angel between radius-vector ~R

and ~k; J0(x) is the Bessel function; and P2(x) is the Legander polynomial.
The integration with respect to angle θR is carried out from θmin up to θmax < 180◦, to

exclude the singular direction. For the derivation of formula (14), we took in to account
that ki ≈ kf and the angle between them is very small.

For the amplitude of the direct breakup (the first term of Eq. (14)) we obtain the
following expression using the result of Ref. [11].

Mdir =
√

4π
k12

Z3e
2
∑
l

Clµ
`
12

[
Z1

ml
1

+ (−1)l
Z2

ml
2

]
ileiσl

∫ ∞
r0

χ3(r)rl+1Fl(k12r)dr∫ ∞
R>Rmin

∫ θmax

θmin

1
Rl−1

exp[i(ki cos θ− kf)R cos θR + 2iηf ln(kfR sin θR)]×

×J0(kiR sin θ sin θR)P1(cos θR) sin θRdθRdR, (18)

where Fl(x) is the spherical Coulomb function, σl is the Coulomb phase shift, Cl is a
factor depending on the direction of ~k12 and ~kf . If ~k12 and ~kf have the same direction
then Cl = (−1)l, and for the opposite direction Cl = 1. The main contributions to
amplitude (15) give the E1 and E2 transitions.
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For the concrete calculation of the matrix elements M3(~kf , ~ki) and Mdir the wave
functions of the bound state and the resonance were chosen in the following asymptotic
form:

χ3(r) ≈ C

r
W−ηb,lb+1/2(2κ12r), (19)

χ3r(r) ≈
Cr
r
W−iηr,lr+1/2(2iqrr), κ12r), (20)

where Wλ,ν(x) is the Whittaker function;ηb = Z1Z2e
2µ12/κ12; and lb and lr are the

orbital moment of bound state (12) and resonance (12)∗, respectively. On integra-
tion with respect to r, the lower limit r0 was taken equal to 3.7 Fm for the reaction
208Pb(6Li, αd)208Pb [12]. Indeed, the contribution to the integral from 0 ≤ r ≤ 3.7 Fm
is small in this region because the wave function χ3(r) of the 6Li ground state oscillates
[13]. The asymptotic coefficients C and Cr are related with the vertex constants of the
virtual decay of the resonance through the following expressions [14]:

G = − exp[
iπ

2
(lb + ηb)]

√
π

µ12
C, (21)

Gr = − exp[
iπ

2
(lr + iηr)]

√
π

µ12
Cr, (22)

For the triple differential cross section we have:

d3σ

dΩ12dωfdE12
=
µ2

3µ12

(2π)5

kfk12

ki
|Mdir +Mr |2 (23)

3. Numerical Calculation of the reaction
208Pb(6Li, αd)208Pb and the Discussion of the Results

The nucleus 6Li has as strongly pronounced (αd) cluster structure in the ground state
as in the lower excited states [13]. The first excited 3+ state is a narrow resonance with
E0 = 2.185 MeV and Γ = 0.02 MeV lying near to the α+d threshold. The disintegration
of 6Li through the 3+ resonance state is determined by the E2 transition because the
ground state is the 1+ state. The kinematics of the reaction was taken in accordance with
Ref.[2]. The Rutherford scattering angle θ was taken equal to 3◦ to allow the assumption
that the disintegration has pure Coulomb character. The 6Li projectile energy was equal
to Ei = E6Li = 156 MeV. The α particle and deuteron were fixed under the same angle
after breakup, While the velocity of the relative motion (vαd < 0) as positive (vαd > 0)
to the direction of motion of the (αd) system center mass.

The value of the vertex constant |G|2 for the 6Li → α + d vertual decay xas taken
equal to 0.41 Fm as in Ref.[12]. The limits of the integration respect with θR were taken
to be θmin = 20◦, θmax = 160◦.
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In Ref. [2] the differential cross section was measured up to the energy Eαd = 1 MeV.
The selection of these energies is related to the difficulties of performing the measure-
ments.

Figure 1 shows the results of the calculation using only resonance amplitude (9).
Notice that the height of the resonance peak coincides with the observed significance.
However, the width is narrower than the experimental curve. The resonance curve ex-
hibits symmetry about point vαd = 0. This can be easily explained in that kf � k12

over the whole investigated region of the Eαd relative energy. It is difficult to be concrete
about the difference between the theoretical and the experimental results on the right
side of Figure 1, because in this region the experiment was only carried out to 610 keV,
but the resonance is at Eαd = 710 keV as on the left side of the figure.
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Figure 1. The triple differential cross section of the Coulomb breakup 208Pb(6Li, αd)208Pb in

the center of mass of fragments as a function of the relative energy when the resonance mechanism

is only included to the amplitude of the breakup. Negative and positive relative energies denote

backward (vαd < 0) and forward (vαd > 0) emission, respectively, of the α particle in the 6Li

center mass system. The experimental data is taken from Ref.[2].

The result, when the amplitude is the sum of the direct Mdir and the resonance Mr

terms, is represented in Figure 2. The result shows good coincidence with experimental
data in the energy region up to Eαd = 710 keV. The difference between our calculation
and the experimental data in region Eαd > 710 keV can be explained in that we did not
take into account the nuclear interaction between α and d in the final state which gives
the contribution in this energy region. It should be noted that the influence of Coulomb
effects occurs due to the different particle accelerations in the field of particle 3 to be
small, since the mass to charge ratio for α particle and a deuteron is almost the same.
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Summarizing our discussion, we can conclude that it is necessary to take into account
the Coulomb interaction between particle 3 and system (12), as in the intermediate so in
the final state to describe the reaction energy spectrum when we deal with three charged
particles.
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Figure 2. The triple differential cross section of the Coulomb breakup 208Pb(6Li, αd)208Pb

in the center of mass of fragments as a function of the relative energy. The amplitude of the

reaction consists of the sum of the direct and the resonance terms for the breakup.

References

[1] G. Baur, C. A. Bertulani, H. Rebel, Nucl. Phys. A 458 (1986) 188; C. A. Bertulani, G.
Baur, Phys. Rep., 163 299.

[2] J. Kiener, H. J. Gills, H. Rebel et al., Phys. Rev., C 44 (1991) 2195.

[3] S. Typel, G. Baur, Phys. Rev., C49 (1994) 379; Phys. Rev., C50 (1994) 2104.

[4] C. A. Bertulani, G. F. Betsch, Phys. Rev., C49 (1994) 2839.

[5] H. Utsunomiya, Y. W. Lui, R. Haenni et al., Preprint. Cyclotron Institute College Station.
Texas. 77843-3966. 1990.

[6] Sh. D. Kunikeev, V. S. Senashenko, Pisma v ZHTF, 14 (1988) 1811.

[7] M. Yu. Kuchiev, S. A. Sheynerman, ZHETF, 90 (1986) 1680.

[8] A. R. Ashurov et. al., Yad. Fiz.,53 (1991) 151.

[9] V. V. Komarov et. al., ECHAYA, 23 (1992) 1035.

1146



IRGAZIEV, ERGASHBAEV

[10] S. Typel, G. Bluge, and K. Langanke, Z. Phys. A. Hadrons and Nuclei.339 (1991) 335.

[11] E. O. Alt, B. F. Irgaziev, A. T. Muminov, A. M. Mukhamedzhanov, Yad. Fiz., 58 (1995)
1967.

[12] S. Igamov, R. Yarmukhamedov, Yad. Fiz.,58 (1995) 1403.

[13] V. I. Kukulin et al., Nucl. Phys., A586 (1995) 151.

[14] L. D. Blokhintsev, A. M. Mukhamedzhanov, A. N. Safronov, ECHAYA, 15 (1984) 1296.

1147


