3.18 Corollary (Fubini)

If $F: \mathcal{I} \times \mathcal{J} \rightarrow C$ is such that both $\int_{J} F(-, J): \mathcal{I} \rightarrow C$ and $\int_{I} F(I,-): \mathcal{J} \rightarrow C$ then we have $\int_{I} \int_{I} F(I, J) \equiv \int_{I} \int_{I} F(I, J)$, in the sense that one exists iff the other does and they have corresponding limit cones.

3.19 Proposition

Every presheaf $F: C^{\mathrm{op}} \rightarrow$ Set is a colimit of a representable functor: we define the category of elements of F el F with objects pairs $(X \in C, x \in F X)$ and morphisms $(X, x) \rightarrow(Y, y)$ maps $f: X \rightarrow Y$ in C such that $(F f)(y)=x$.

Consider the functor elF $\xrightarrow{\text { U }} C \xrightarrow{H_{C}}\left[C^{\text {op }}\right.$, Set $](X, x) \mapsto X \mapsto H_{X}$. We will show that F is a colimit for $H_{\bullet} \circ U$. Recall the Yoneda isomorphisms (\star) $\left[C^{\text {op }}, \operatorname{Set}\right]\left(H_{V}, F\right) \cong F V$ naturally in V and F. For every $(X \in C, x \in F X)$ we have a $\operatorname{map} \widehat{x}: H_{X} \rightarrow F$ in $\left[C^{\text {op }}\right.$, Set]. Claim: $\left(\widehat{x}: H_{X} \rightarrow F\right)_{(X, x) \in \mathrm{el} F}$ is a cocone from $H_{\bullet} \circ U$

commutes. But $\widehat{y} \circ H_{f}=(\widehat{F f)(y)}$ (by naturality of (\star) in $V)=\widehat{x}$ (because $f:(X, x) \rightarrow(Y, y)$ is a map in elF). Claim: $\left.\widehat{x}: H_{X} \rightarrow F\right)_{(X, x) \in \mathrm{el} F}$ is a universal cocone under $H_{\bullet} \circ U$: suppose we are given another cocone, i.e. $\left(\alpha_{(X, x)}: H_{X} \rightarrow\right.$
 in elF. By naturality of (\star) in F, if we are given $\widehat{x}: H_{X} \rightarrow F$ then $k \circ \widehat{x}$: $H_{X} \rightarrow G=\widehat{k_{X}(x)}: H_{X} \rightarrow G$. Hence $k_{X}(x)=\widehat{\widehat{k_{X}(x)}}=\widehat{\alpha_{X}(x)}$. So k, if it exists, must have $k_{X}: F X \rightarrow G X$ given by $x \mapsto \widehat{\alpha_{(X, x)}}(\dagger)$. It remains only to check that this definition works, i.e. that (\dagger) defines a natural transformation, i.e.

```
\(F Y \xrightarrow{k_{r}} G Y\)
\(F f \downarrow \quad \downarrow G f\) commutes for all \(f: X \rightarrow Y\) in \(C\). On elements, going
\(F X \xrightarrow{k_{x}} \quad G X\)
```

right and then down $y \mapsto \widehat{\alpha_{(Y, y)}} \mapsto(G f)\left(\widehat{\alpha_{(Y, y)}}\right)$ and going down then right $y \mapsto(F f)(y) \mapsto \alpha_{(\widehat{X,(F f)}(y))}$. But $(G f)\left(\widehat{\left.\alpha_{(Y, y)}\right)}=\alpha_{(Y, y)} \circ H_{f}\right.$ by naturality of (\star) in V. We have a map $f:(X,(F f)(y)) \rightarrow(Y, y)$ in elF, so by $(\ddagger) \alpha_{(Y, y)} \circ H_{f}=\alpha_{(X,(F f)(y))} \therefore$ $(G f)\left(\widehat{\alpha_{(Y, y)}}\right)=\alpha_{(Y, y)} \circ H_{f}=\alpha_{(X,(F f)(y)}$ as required.

3.20 Definition

Let $F: \mathcal{I} \rightarrow C, G: C \rightarrow \mathcal{D}$. We say that:
G preserves the limit of F if whenever $\left(V \xrightarrow{p_{l}} F I\right)_{I \in I}$ is a limit for F, also $\left(G V \xrightarrow{G p_{I}} G F I\right)_{I \in I}$ is a limit for $G F$; we have the obvious definitions for " G preserves limits of shape I^{\prime} " and "G preserves (all) limits".
$G \underline{\text { reflects the limit of } F}$ if, whenever $\left(X \xrightarrow{\alpha_{I}} F I\right)_{I \in I}$ is a cone over F and $\left(G X \xrightarrow{G \alpha_{I}}\right.$

