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Abstract

The N -dimensional Schrdinger equation involving a general, central potential
VN (r) , is decomposed into a 3-dimensional component plus a term that may be
treated as a dimension-dependent perturbation. This allows discussion of the general
N -dimensional system from a 3-dimensional perspective.

Introduction

Recently several papers have focused on the role the dimensionality “N ” of the
space plays in determining the energy levels of quantum mechanical systems. One assumes
in such discussions that the system under consideration is subject to a “central” potential
VN (r), where r =

√
r2

1 + r2
2 + · · ·r2

N . Thus Hagen [1] discusses how the dimensionality
affects the energies of the generalized hydrogen atom and rewrites the N -dimensional
Coulomb potential as a two-dimensional Coulomb term plus a harmonic oscillator per-
turbation in the other dimensions. A related discussion for hydrogen appears in the
paper of Ho [2] where the author compares the energies of a two-dimensional, possibly
multivalued-wavefunction Coulomb system, with those of the standard three-dimensional
Coulomb problem. The exact solution for the N -dimensional Coulomb system is well
known [3]. Similarly well-researched is the N -dimensional harmonic oscillator, whose
exact solutions can be obtained immediately if one uses “N -dimensional” Cartesian co-
ordinates. The N -dimensional oscillator is also exactly solvable in spherical co-ordinates
[4].

In the present work we show how the N -dimensional Hamiltonian for an arbitrary
system subject to any general potential VN(r) can be decomposed in a simple peda-
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gogical way into a three-dimensional component, plus a perturbation. This allows one
to make general statements about the energies of an arbitrary N -dimensional, relative
to the corresponding 3-dimensional system. For a few special cases, using lowest-order
perturbation theory one can additionally explicitly evaluate the energy differences that
arise because of the difference of dimension. This provides an interesting illustration of
first-order perturbation theory, where comparison with the exact eigenvalues indicates
under what conditions this approximation gives accurate results.

Decomposition Procedure

The N -dimensional radial Hamiltonian of a system subject to a potential VN (r)
is [5, 6, 7]:[
− h̄2

2m
d2

dr2
+
h̄2(` +N/2− 3/2)(`+N/2 − 3/2 + 1)

2mr2
+ VN(r)

]
u

(N)
n` (r) = ENu

(N)
n` (r),

(1)
where u

(N)
n` (r) is the N -dimensional radial eigenfunction,∫ ∞

0

{
u

(N)
n` (r)

}2

dr = 1,

and ` is assumed to be integer such that the total wavefunction is single-valued.
One can re-write eq. (1) as follows:[
− h̄2

2m

d2

dr2
+

h̄2`(`+ 1)

2mr2
+ VN (r) +

h̄2(`+ N/2− 3/2)(`+ N/2− 3/2 + 1)

2mr2

− h̄2`(`+ 1)

2mr2

]
u

(N)
n` (r) = ENu

(N)
n` (r),

i.e. after a little algebra one obtains:

[H0 +H1]u(N)
n` (r) = ENu

(N)
n` (r)

where

H0 = − h̄
2

2m
d2

dr2
+
h̄2`(`+ 1)

2mr2
+ VN(r), (2)

H1 =
h̄2(N/2 − 3/2)(2`+N/2 − 1/2)

2mr2
. (3)

Thus to first order in perturbation theory:

EN ∼ E3 + ∆E, (4)
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where E3 are the 3-dimensional energy levels corresponding to the Hamiltonian H0 , and
to first-order in perturbation theory:

∆E =
∫ ∞

0

{u(3)
n` (r)}2 H1 dr =

h̄2(N − 3)(4`+ N − 1)
8m

∫ ∞
0

{u(3)
n` (r)}2
r2

dr. (5)

One immediately notes that by construction ∆E = 0 if N = 3, and since {u(3)
n` (r)}2/r2

is positive definite, ∆E is positive if N > 3, and negative if N < 3 (i.e. N = 2). Hence
for a given system, relative to the N = 3 space the system’s energy levels are always
shifted upwards as N increases and downwards for N = 2. Increasing the dimensionality
of the space can thus be viewed as introducing an additional N -dependent centrifugal
potential.

The case N = 1 deserves special care because, whereas for N 6= 1, u(N)
n` (0) = 0,

and r is only defined for r ≥ 0, for the case N = 1, u(1)
n0 (r) extends from −∞ ≤ r ≤ ∞ .

Thus, the normalization condition for the one-dimensional case is∫ ∞
−∞
{u(1)

n0 (r)}2 dr = 1.

Additionally, and more importantly [15], u(1)
n0 (0) is not necessarily zero. This does not

however mean we must completely eliminate N = 1 from the discussion which follows. If
one works with central potentials V (r), necessarily the solutions u(1)

n0 (r) are either of even
or of odd parity. The even parity N = 1 solutions need not be zero at the origin, hence
must be eliminated from our discussion. For the odd-parity N = 1 solutions however,
u

(1)
n0 (0) is necessarily zero. Thus, with the proviso that the N = 1 states considered are of

odd parity, one can also discuss what happens to these states using the above expression.
For these states ∆E = 0 according to Eq. (5). This is because, aside from a

√
2 difference

in normalization constant, these correspond to the ` = 0, N = 3 states (and energies).
Two N -dimensional cases where Eq. (5) can be evaluated analytically are the

familiar (a) harmonic oscillator, and the related [8-11] (b) Coulomb potential. These are
discussed in the following two sections. For these same systems the exact N -dimensional
eigenvalues are also known. They can be obtained directly from the 3-dimensional
solutions by the straightforward substitution ` → ` + (N − 3)/2 [4, 7]. Thus, for these
two potentials, several interesting comparisons between perturbation theory and the exact
solutions can be made. In this paper we also discuss the problem of (c) a particle in an
N -dimensional vs a 3-dimensional infinite box, after the discussion of cases (a), and (b).

(a) N -dimensional Harmonic Oscillator: VN (r) = 1
2
mw2r2 = h̄2r2

2mb4
; (b =√

h̄/mw).
Here [4] the exact N -dimensional energies are:

EN = (2n+ `+ N/2)h̄w, n = 0, 1, 2, . . . ` = 0, 1, 2, . . . , (6)
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while the 3-dimensional eigenfunctions are:

u
(3)
n` (r) =

[
2n!

Γ(n+ `+ 3/2)3b

]1/2 (r
b

)`+1

exp(−r2/2b2)L`+1/2
n (r2/b2). (7)

Thus, substituting in Eq. (5)

∆E =
2n!h̄2(N − 3)(4`+ N − 1)

Γ(n + ` + 3/2)38m

∫ ∞
0

(r
b

)2`+2

exp(−r2/b2)
{L`+1/2

n (r2/b2)}2
r2

dr

b

=
2n!h̄w(N − 3)(4` +N − 1)

Γ(n+ `+ 3/2)3

1
2

∫ ∞
0

(u)`−1/2 exp(−u){L`+1/2
n (u)}2du.

Using the formula [12, 13]:∫ ∞
0

(u)a−1 exp(−u){Lan(u)}2du =
Γ(n + a+ 1)3

an!
, (8)

one directly obtains the result:

∆E = h̄w
(N − 3)

2

[
1 +

N − 3
4` + 2

]
=

h̄w(N − 3)
2

+
h̄w(N − 3)2

2(4`+ 2)

→ h̄w(N − 3)
2

for large `. (9)

This correction, in agreement with the previous general arguments, is > 0(< 0) for
N > 3(< 3). It also reduces to the exact energy difference for large ` where, using Eq.
(6) one has

EN = E3 + ∆Eexact

(2n+ ` +N/2)h̄w = (2n+ `+ 3/2)h̄w +
(N − 3)

2
h̄w. (10)

The result that the first-order expression is approximately equal to the exact energy
difference, i.e. ∆E → ∆Eexact for large ` is not unexpected since for large angular
momentum one knows that the particle is on the average far away from the origin, hence
is not very much affected by the perturbation H1 which is proportional to 1/r2 . In
this case H1 will be a small perturbation as compared to H0 and first-order calculations
should, and do turn out to be very accurate. On the other hand there are cases (small ` ,
large N − 3) where the first-order result is seen not to be very accurate. From Eq. (9)
we see that for N = 1, ` = 0, ∆E = 0, consistent with the remarks in the decomposition
section that for N = 1, ` = 0, ∆E should always be zero for the odd-parity states.
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(b) N -dimensional Coulomb Potential: VN (r) = − Ze2

4πε0r
.

Here the exact N -dimensional energies are

EN = − α2mc2

2(p+ ` + 1 + (N − 3)/2)2
,

α =
e2

4πε0h̄c
, p = 0, 1, . . . ` = 0, 1, . . .n = p+ ` + (N − 3)/2 + 1, (11)

while the exact 3-dimensional eigenfunctions (with κ = mcα/(nh̄)) are:

u
(3)
n` (r) =

[
2κ(n− `− 1)!
2n[(n+ `)!]3

]1/2

(2κr)`+1 exp(−κr)L2`+1
n−`−1(2κr). (12)

Thus, substituting in Eq. (5):

∆E =
h̄2(N − 3)(4` +N − 1)

8m
(n − `− 1)!
2n[(n+ `)!]3

∫ ∞
0

(2κr)2`+2 exp(−2κr)
{L2`+1

n−`−1(2κr)}2

r2
2κdr

=
mc2α2(N − 3)(4`+ N − 1)

2
(n − `− 1)!
2n[(n+ `)!]3

∫ ∞
0

(u)2` exp(−u){L2`+1
n−`−1(u)}2du.

Using Eq. (8) one obtains finally:

∆E =
mc2α2

2(p+ ` + 1)2

N − 3
p+ ` + 1

[
1 +

N − 3
4` + 2

]
→ mc2α2

2(p+ ` + 1)2

N − 3
p+ ` + 1

for large `. (13)

This result, is also in agreement with the previous general arguments, i.e. ∆E > 0(< 0)
for N > 3(< 3). For large ` , and for the same reasons as in case (a), it also reduces to
the leading term in the exact energy difference where, using Eq. (11) one has

EN = E3 + ∆Eexact

− α2mc2

2(p+ ` + 1 + (N − 3)/2)2
= − α2mc2

2(p+ `+ 1)2
+

mc2α2

2(p+ ` + 1)2

N − 3
p+ `+ 1

+ · · · .(14)

From Eq. (13) we see that for N = 1, ` = 0, ∆E = 0, again consistent with the remarks
in the decomposition section that for N = 1, ` = 0, ∆E should always be zero for the
odd-parity states.

(c) N -dimensional Particle in a Box:

VN(r) = 0, 0 < r < a,
∞, a < r <∞. (15)
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For this case the exact N -dimensional eigenfunctions are:

u
(N)
n` (r) = A

(N)
n` rj`+N/2−3/2(kn`r), 0 < r < a,

0, a < r <∞ (16)

where EN = h̄2k2
n`/2m , and A

(N)
n` is a normalization constant given by:

1 =
(
A

(N)
n`

)2
∫ a

0

j2
`+N/2−3/2(kn`r)r2dr.

As for the allowed kn`s , these are given by the requirement:

j`+N/2−3/2(kn`a) = 0, (or J`+N/2−1(kn`a) = 0.) (17)

For the three-dimensional case the energies can be decomposed in the usual way into
the solutions for ` = 0, i.e. the roots of j0(kn0a), namely E(n0)

3 = h̄2k2
n0/2m, n = 1, 2, . . .

the solutions for ` = 1, i.e. the roots of j1(kn1a), namely E
(n1)
3 = h̄2k2

n1/2m , and
generally E

(n`)
3 = h̄2k2

n`/2m , where j`(kn`a) = 0. It is interesting to compare these to
the energies for dimension N = 5. The solutions in this case for ` = 0 correspond to the
solutions for the roots of j1(kn0a), i.e. are identical to the 3-dimensional solutions for the
case ` = 1. Similarly for N = 5 and ` = 1, one has all the 3-dimensional solutions for
` = 2. However, all the 3-dimensional ` = 0 solutions (which begin at a lower energy)
are missing for the N = 5 case. Similarly if N = 7 all the ` = 0, and ` = 1, N = 3 levels
are missing but the 3-dimensional ` = 2 levels correspond exactly to the N = 7, ` = 0
levels, etc. A similar analysis may be carried out for N = 2, 4, 6, etc.

For this system, substituting Eq. (16) in Eq. (5) yields:

∆E =
h̄2(N − 3)(4`+N − 1)

8m

(
A

(3)
n`

)2
∫ a

0

j2
` (kn`r)dr

= E3(n, `)
(N − 3)(4` +N − 1)

4

∫ b
0 j

2
` (u)du∫ b

0
j2
` (u)u2du

(18)

where b = kn`a .
Eq. (18) must be evaluated numerically. This may be done for example using

Mathematica [14]. Three sets of numerical results are listed in Table 1 (where it is
assumed h̄ = m = a = 1).

From examples (a) and (b) above, one expects (and obtains) good agreement
between ∆Eexact and ∆E , for large ` (` = 10), and bad agreement for small ` (` = 0).
The lowest n state is considered throughout in this numerical calculation, for all three
cases. The result ∆E is seen to always be greater than ∆Eexact , as expected from
variational considerations, and as ` increases ∆E/E3 is seen to rapidly decrease in value.
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Table 1. Numerical Evaluation of ∆E for N -dimensional particle in a box

` N k1` k1`+1 E5(1, `) E3(1, `) ∆Eexact ∆E Eq. (18) ∆E/E3

0 5 π 4.49 10.08 4.93 5.15 8.87 1.80
5 5 9.35 10.50 55.13 43.71 11.42 11.89 0.272
10 5 15.03 16.14 130.25 112.95 17.30 17.54 0.155

Conclusions

The N -dimensional prodlem for a general potential VN (r) has been studied from
a 3-dimensional perspective, by decomposing the Hamiltonian into a 3-dimensional com-
ponent and a 1/r2 -dependent perturbation. For N > 3 this behaves as an additional
centrifugal potential, and for N = 2 as a centripetal potential. The perturbation is accu-
rately treated using first-order perturbation theory in the case of states with large angular
momenta. For two cases: the N -dimensional oscillator and the N -dimensional Coulomb
potential, exact first-order analytic calculations are compared to the exact dimension-
induced energy correction. For the particle in the N -dimensional infinite box it is pointed
out that the energy levels are identical for N = 3, 5, 7 · · ·(N = 2, 4, 6 · · ·) but as N in-
creases, lower ` levels are progressively eliminated. Additionally for this case, numerical
calculations are performed that yield results consistent with those obtained for the cases
which were treated analytically.

KFUPM support is acknowledged.
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