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Abstract

We investigate different formulations of the envelope-function method and show
that the accuracy of the calculated zone-centre confinement energies can be calcu-
lated by means of bulk band structure. We show how coupling to the conduction
and spin-split-off bands can decrease the light-hole zone-centre confinement energies
and lead to significant differences in the calculated subband dispersion.

1. Introduction

One of the major themes to emerge in the study of quantum well lasers is the
key role of the valence band states in determining the lasing properties of any quantum
well (QW) structure. An accurate description of the gain as a function of carrier or
current density therefore requires a careful analysis of the valence band states in the
quantum well structure. The envelope function method is commonly used to investigate
the band structure of layered semiconductor structures. The numerical solution of the
multicomponent envelope-function Hamiltonian is difficult; therefore a variety of different
simplifications have been used in the literature.

In this paper, the valence band structure is calculated using Hamiltonians based
on different numbers of bulk bands. It is seen that when we consider explicitly the off-
diagonal mixing of the conduction-and valence-bands or include the spin-split-off band,
the light-hole band nonparabolicity is increased and the energies of the light-hole subbands
are decreased. It is shown that the accuracy of the calculated zone-centre subband
energies and dispersions can be simply predicted by plotting the equivalent bulk band
structure for an infinitely deep quantum well using the different starting Hamiltonians.
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GÖNÜL

Some analytical expressions are also presented to calculate valence subband zone-centre
confinement energies.

In Section 2 we present the envelope-function Hamiltonian and the different band
models based on the Hamiltonian. We present the analytical expressions for the calcula-
tion of zone-centre confinement energies for valence bands in Section 3. We demonstrate
in Section 4 that the effects of nonparabolicity on zone-centre confined-state energies can
be predicted directly from the bulk band structure for an infinitely deep QW structure.
In Section 5 we use the envelope function Hamiltonian to calculate the subband disper-
sion in the quantum well plane for different band models, make comments concerning the
effects of nonparabolicity and well width on subband dispersion in an infinite quantum
well structure and consider also the influence of the spin-split-off band. We show how the
inclusion of the conduction and spin-split off bands affects the position of the light holes
at k|| = 0.

2. Envelope-Function Hamiltonians

In this section we describe the different envelope function Hamiltonians used in the
calculations. The eight-band k.p Hamiltonian is based on the six highest valence bands
and two lowest conduction bands at the Γ point, typically including all interactions
between these bands up to order k2 . One of the most important advantages of the
eight-band model is that it treats equally all of the bands explicitly included in the
calculation. In order to simplify the numerical solution of the eight-band model, it is
common to block diagonalize it into two 4 × 4 Hamiltonians [1], which can be further
simplified by introducing the axial approximation [2], which retains the exact dispersion
along the z -direction (when kx = ky = 0) but modifies the Hamiltonian so that it
is axially symmetric in the x − y plane. Thus, the block diagonalized extended k.p
Hamiltonian for an unstrained semiconductor is given in the axial approximation by [1],

H =


ECB P1 P2 P3

P ∗1 EHH A B
P ∗2 A∗ ELH C
P ∗3 B∗ C∗ ESO

 , (1)

where the diagonal matrix elements of H are defined as

ECB = Eg + Eco +
(
F +

1
2

)
k2
t +

(
F +

1
2

)
k2
z ,

EHH = Eνo −
1
2

(γ1 − 2γ2)k2
z −

1
2

(γ1 + γ2)k2
t ,

(2)

ELH = Eνo −
1
2

(γ1 + 2γ2)k2
z −

1
2

(γ1 − γ2)k2
t ,

ESO = Eνo −∆− 1
2
γ1k

2
z −

1
2
γ1k

2
t . (3)
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Here, γ1, γ2 and γ3 are related to the true Luttinger parameters, which will be described
below; ∆ is the magnitude of the spin-orbit energy at k = 0; and Eco and Eνo are the
Γ-point conduction and valence-band-edge energies. The off-diagonal matrix elements of
H are given by

P1 = −(1/
√

2)Pkz,

P2 = (
√

2/
√

3)Pkz + i/
√

6)Pk||,

P3 = −(1/
√

3)Pkz + (i/
√

3)Pk||,

A =
√

3γ3k||kz + i(
√

3/2)γk2
||, (4)

B = −(
√

3/
√

2)γ3k||kz + i(
√

3/
√

2)γk2
||,

C =
√

2γ2k
2
z − (1/

√
2)γ2k

2
|| − i(3/

√
2)γ3k||kz,

k2
|| = k2

x + k2
y, γ =

1
2

(γ2 + γ3),

where P is the Kane matrix element [3]. We have taken h̄ = m = 1. The axial
approximation involves introducing the term γ in A and B. The parameters γi are related
to the true valence-band Luttinger parameters γLi by the relations [4]

γL1 = γ1 + Ep/(3Eg),
γL2 = γ2 + Ep/(6Eg),
γL3 = γ3 + Ep/(6Eg), (5)

where Eg is the fundamental band gap and Ep is related to the Kane matrix element
P by Ep = 2mP 2/h̄2 . The coupling between the conduction and valence bands is
explicity included in the eight-band model. In the k.p approach there are seven bulk
band structure parameters Eg, P, F,∆, γ1, γ2 and γ3 . Since the fundamental band gap
Eg and the spin-orbit energy ∆ can be determined independently as a function of
composition and temperature, we therefore take them as fixed when calculating the other
five parameters from the measured or estimated effective masses namely, m∗c , m∗hh, m

∗
lh

and m∗so in the (001) direction and m∗hh in the (111) direction. The eigenvalues of the
blocked Hamiltonian for the bulk case, calculated up to second order in the components
of the momentum k, can be used to determine the effective mass for each band in the
vicinity of the Γ point. The Γ6 effective mass m∗c is given [1] by,

m∗−1
c = 1 + 2F +

Ep
3

[
2
Eg

+
1

Eg + ∆

]
, (6)

which shows the band gap and spin-orbit energy dependence of the conduction band
effective mass. Also, the heavy-hole effective mass along the (001) direction is determined
only by the parameters γ1, γ2 as

m?
hh = (γ1 − 2γ2)
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GÖNÜL

whereas in the same direction the light hole effective mass is coupled to the conduction
band as

m∗−1
lh = (γ1 + 2γ2) +

[
2Ep
3Eg

]
. (7)

On the other hand, the heavy-hole effective mass in the (111) direction depends only on
γ1 and γ3 and is given by

m∗−1
hh = (γ1 − 2γ3). (8)

Finally, the effective mass of the split-off branch is given by

m∗−1
so = γ1 +

Ep
3Eg

(
Eg

Eg + ∆

)
. (9)

It can be noticed from Eqs. (5)-(9) that in the eight-band k.p model the light-hole and
split-off bands are both coupled to the lowest conduction band, whereas the heavy-hole
effective mass is not.

Four different models based on the Hamiltonian of Eq. (1) is considered. These are
(i) the four-band model, with coupled CB, HH, LH, and SO bands (solid line); (ii) a three-
valence band model, with coupled HH, LH, and SO bands, and a parabolic CB (dotted
line); (iii) a two-band model, with coupled HH and LH, a parabolic conduction band,
and the split-off band neglected (dashed line); and (iv) a mixed three-band model, with
coupled CB, HH, and LH, and neglecting the SO band (dotted-dashed line). CB stands
for conduction band, HH stands for heavy-hole band, LH stands for light-hole band, and
SO for spin-split-off band. In models (ii) and (iii), we use the true Luttinger parameters
γLi , whereas in (i) and (iv) we use the valence-band effective mass parameters γi . These
two sets of parameters are related by Eq. (4). In model (i) the term 1+F replaces the
inverse bulk band edge conduction band mass since we have now explicitly included the
coupling to the top valence bands. This is obtained from the experimental conduction
band mass Eq. (5). To obtain the matrix eigenvalue equation for the quantum well
subband dispersion, we replace kz by the operator −i∂/∂z for quantum wells grown
along the (001) direction.

3. Infinite Well Hamiltonian

In this section, we apply the envelope-function Hamiltonian of Eq. (1) to demon-
strate that the zone-centre confined-state energies in an infinitely deep quantum well can
be determined directly from a plot of the bulk band dispersion along the growth direction.
At the centre of the two-dimensional Brillouin zone, where k|| = 0, Eq. (1) decouples
into two independent matrices, a 1× 1 matrix describing the heavy-hole dispersion and
a 3× 3 matrix,
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H =

∣∣∣∣∣∣
Eg +

(
F + 1

2

)
k2
z (

√
2/
√

3)Pkz −(1/
√

3)Pkz
(
√

2/
√

3)Pkz −1
2 (γ1 + 2γ2)k2

z

√
2γ2k

2
z

−(1/
√

3)Pkz
√

2γ2k
2
z −∆− 1

2
γ1k

2
z

∣∣∣∣∣∣ (10)

which needs to be solved to calculate the (mixed) CB, LH, and SO confined-state energies.
Because of this decoupling, the heavy-hole zone-centre confined-state energies are identical
in the four models considered above. If we take Eνo = 0, the heavy-hole bulk dispersion
along kz is given by

EHH(kz) = −1
2

(γ1 − 2γ2)k2
z . (11)

If we define the quantum well between z = 0 and L , and apply the boundary conditions
that the envelope function f(z) goes to zero at the interfaces [5], we find that the heavy-
hole confined states are standing waves with wave vector kz = nπ/L . The envelope
functions are given by

f(z) =
{ √

2/L sin(nπz/L) 0 < z < L
0 otherwise

(12)

and the confined-state energies for heavy-holes are found directly from the bulk band
structure by replacing kz by nπ/L in Eq. (11).

The remaining 3×3 matrix of Eq. (10) can be solved using an expansion in diagonal
(uncoupled) states [6, 7]. We consider the calculation of a confined-state predominantly
of light-hole character, for which the light-hole component of the envelope function varies
as fLHm(z) = sin(mπz/L). If we allow the split-off component of the wave function also
to vary as fsop(z) = sin(pπz/L), then the off-diagonal term involving k2

z introduces a
direct mixing between the normalized light-hole and split-off components such that [7]

〈fsop(z)| − ∂2/∂z2|fLHm(z)〉 = (mπ/L)2δpm , (13)

i.e., the only direct mixing between fLHm and the split-off band is with fsom and the
magnitude of the interaction is found by replacing k2

z by (mπ/L)2 in the 3× 3 matrix.
Finally, the terms P2 and P3 linking the conduction band to the light-hole band and
split-off bands are both of order kz . Taking the conduction-band envelope function
as fCBq(z) = icos(qπz/L) [8], we conclude that fLHm and fSOm mix only with the
conduction-band component fCBm , with the magnitude of the interaction found by
replacing kz in P2,3 by mπ/L in Eq. (1). Hence, the zone-centre energy of the mth
LH, SO, and CB confined states in an infinite quantum well can be found by replacing
each occurrence of kz in Eq. (1) with mπ/L .

The zone-centre confined-state energies in an infinite well of width L are then just
equal to the bulk band energies at kz = mπ/L for each of the four calculation models
described above. We thus conclude that in an infinite well the difference between the
calculated confined-state energies using different models can be predicted directly from
the differences in the bulk structures.
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We further note that, the zone centre LH and SO confined state energies can be
determined analytically in the HH+LH+SO model by finding the eigenvalues of

det[Hij − δijE] = 0 (14)

where Hij is the 2× 2 Hamiltonian for the LH and SO bands at k|| = 0:

H =
[
D+ C−
C− D−

]
. (15)

The matrix elements in (15) are given by

D+ = −1
2

(γ1 + 2γ2)k2
z, (16)

D− = −∆− 1
2
γ1k

2
z, (17)

and
C− =

√
2γ2k

2
z. (18)

Solution of Eq. (14) gives the zone centre confinement energies for the LH and SO
subbands as

ELH,SO =
(D+ +D−)±

√
(D+ + D−)2 − 4(D+D− − C2

−)

2
, (19)

where the + and - signs correspond to the LH- and SO-subbands, respectively. The energy
of the nth LH and SO confined states can then be found by replacing kz by nπ/L in Eqs.
(16)-(18).

4. Valence-Subband Dispersion and Zone-Centre Confined-State Energies

In this section we show that the accuracy of the calculated zone-centre energies in
an infinite QW using different models can be predicted by plotting the equivalent bulk
band structures E(kz, k||) by taking k|| = 0 and kz as a number. We first calculate the
variation of confined-state energy with well width for GaAs infinite quantum wells with
a spin-orbit energy of 343 meV. To illustrate the effect of the spin-split-off band we then
repeat the calculations assuming a spin-orbit energy of 800 meV.

Since we are primarily interested in investigating trends in the different band models
as a function of spin-split-off energy, we use the spherical approximation, obtained by
replacing γL2 and γL3 by a suitable average value:

γ2 = γ3 =
(3γ3 + 2γ2)

5
. (20)

The band-structure parameters used here and in later sections are listed in Table 1.
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Figure 1 (a) illustrates the light-hole dispersion of bulk GaAs calculated using
models (i) CB, LH, and SO mixing at the zone centre (dashed line), (ii) coupled LH and
SO bands (solid line), and (iii) the LH band model (dotted line). The bulk light-hole band
dispersion calculated using models (i) and (ii) are very close to each other, up to about
60 meV below the band edge, and we find that the calculated confined-state energies for
GaAs infinite quantum wells (see Figure 1 (b)), are also in close agreement in this energy
range. It is seen from Figure 1(a) that interactions with both the conduction band and
split-off band increase the light-hole band nonparabolicity.
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Figure 1. (a) Dispersion of the light-hole band in bulk GaAs with a spin-orbit energy of 343

meV calculated using the three different Hamiltonians, described in the text.

(b) Energy of the light-hole states as a function of well width in an infinite GaAs quantum well,

using the three Hamiltonians.

It is seen from Figure 1 that for a fixed well width L, the differences in the nth

calculated zone-centre confinement energies in an infinite quantum well are equal to those
calculated for the bulk band dispersion along the growth direction at a fixed wavevector
kz = nπ/L , as predicted. This result is modified in a finite quantum well, where
the difference between the calculated confinement energies using different band models
increases with confined-state index, approaching the difference in bulk band energies for
the highest confined states, as we have shown recently [8].

We repeat the calculations of Figure 1 assuming the spin-orbit-energy is 800 meV
to see how the split-off band affects the bulk subband dispersion and confinement energies
of light-hole states.
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Figure 2. (a) Dispersion of the light-hole band in bulk GaAs assuming a spin-orbit energy of

800 meV using four different Hamiltonians. (b) Energy of the light-hole states as a function of

well width in an infinite GaAs quantum well, using the three Hamiltonians

This is shown in Figure 2 where we have now also included model (iv), with coupled
CB and LH (dot dashed line). Due to the wide band-gap and large spin-orbit energy,
a similar band dispersion is found in models (ii) LH + SO and (iv) CB + LH implying
the equal importance of the CB and SO in this energy range. We would thus predict
that the calculated confinement energies should also be similar in the two models, and
this is indeed found to be the case. The comparison of Figs. 1 and 2 show clearly
that as the spin-orbit-splitting increases from 343 meV to 800 meV, the nonparabolicity
is also reduced and hence the differences decrease between the calculated zone-centre
confinement energies using the different models.

Overall, we conclude from Figs. 1 and 2 that the accuracy of the calculated zone-
centre energies under different approximations can be well estimated by using different
models to plot the bulk band structure along the growth direction.

5. Valence-Subband Structure of Infinite Quantum Wells

In this section we consider the valence-subband dispersion, which is complicated
due to the interactions between the different subbands that lead to band mixing effects
[7]. It is instructive to compare the infinite quantum well valence band dispersion in
different models.

In Figure 3 we present the calculated valence subband dispersion for 100 Å GaAs
infinite quantum well as a function of in-plane wavevector kx .

We use the full fourband Hamiltonian of Eq. 1 with coupled CB, HH, LH, and SO
(dashed line), a three valence band model with coupled HH, LH, and SO (solid line), and
a two band model with coupled HH and LH (dotted line).
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Figure 3. Valence-subband dispersion of a

100 Å GaAs infinite quantum well, calculated

with the following bands included explicitly in

the calculation (dotted line) HH and LH only,

(solid line) HH, LH, and SO, (dashed line) CB,

HH, LH and SO.

Figure 4. Valence-subband dispersion of a

200 Å GaAs infinite quantum well, calculated

with the following bands included explicitly in

the calculation (dotted line) HH and LH only,

(solid line) HH, LH, and SO, (dashed line) CB,

HH, LH and SO.

The valence subband mixing appears even at small values of kx , as evidenced by the
anticrossing regions. This band mixing effect is of different magnitude for each subband,
depends mainly on the γ3 term in A in Eq. 1. At large values of kx the quadratic terms
will become dominant, and, therefore the dispersions approach parabolic curvatures at
large wavevector kx .

We find in Figure (3) that the calculated band dispersion of the first heavy-hole
state is practically the same throughout the whole wavevector range for the three band
models considered. Differences in the subband dispersion start to appear when the calcu-
lated zone-centre confinement-energy of the light-hole subband varies with the different
band models (notice the differences in the subband dispersion of HH2, LH1 and HH3 in
the different models). The differences in subband dispersion become more pronounced
as the calculated differences in LH zone-centre confinement-energy increase (notice the
differences in subband dispersion of HH4, LH2, and HH5 with the different band models).
In summary, the differences in subband dispersions increase as the calculated zone-centre
energy differences increase.

The effect of decreasing the confinement energy can be seen in Figure 4, where we
present the valence band dispersion for a 200 Å GaAs infinite quantum well. As the well
width increases from 100 Å to 200 Å , the level separation decreases, and this leads to an
enhancement of the valence band mixing and a change in the subband energy separations.
The region where the effects of the diagonal and off-diagonal quadratic terms overcome
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GÖNÜL

the k-linear ones also depends on the well width. It is again shown in Figure 4 that the
difference between valance-subband dispersion in the two-band and many-band models
increases with an increase in the calculated zone-centre light-hole confinement energy
difference in the two-band and many-band models.

We have also investigated the influence of the magnitude of the spin-orbit energy on
the valence subband dispersion. To demonstrate the effects of large spin-orbit energy we
repeat the calculations of Figure 3 assuming a spin-orbit energy of 800 meV. We would
expect, because of the large spin-orbit energy, that the calculated subband dispersion
should only vary very weakly depending on whether the split-off band is included (solid
and dashed line) or not (dotted and dotted dashed line) in the calculation. This is indeed
found to be the case. The comparison of Figures 3 and 5 show that the models which
includes CB and SO get closer to the two band model of HH+LH due to the large-spin-
orbit energy.
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Figure 5. Valence-subband dispersion of a 100 Å GaAs infinite QW with a spin-orbit energy

of 800 meV, calculated for the stated band models.

As we have shown in reference [8], the main differences found between subband
dispersions in quantum wells using different band models can be predicted simply from a
plot of the bulk band structure as a function of E(nπ/L, kx), which can then serve as an
adequate guide in selecting the Hamiltonian model for a specific problem.

6. Summary and Conclusions

In this paper, the envelope-function method was used to calculate confinement
energies in infinite quantum wells under various approximations. We found that the
differences between the various bulk band structures provide a good guide to the resulting
differences in calculated confined-state energies.
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We have investigated the influence of the conduction band and the spin-split-band
on the valence-subband dispersion in an infinite quantum-well using a two band HH+LH
model, and three other band models of k.p Hamiltonians, including HH+LH+SO, CB+HH+LH,
and CB+HH+LH+SO, respectively. We found that the inclusion of the CB and SO cou-
pling start to affect the subband dispersion when the calculated confinement energy of
the light-holes varies significantly between the different band models.

For GaAs infinite quantum wells we found marked differences between the light-
hole band structures calculated using the different k.p Hamiltonians. Our results demon-
strated how the effect of nonparabolicity on light-hole confined-state energies becomes
more marked with increasing confined-state index.

Table 1. Material parameters for GaAs.

m∗c 0.0665
γL1 6.85
γL2 2.58
γL3 2.58

Eg(eV ) 1.42
∆(eV ) 0.343
Ep(eV ) 24
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