Tr. J. of Physics 22 (1998) , 193 – 197. © TÜBİTAK

Deformation Methods for Investigation of the Deep Level Parameters in Semiconductors

S. Z. ZAINABIDINOV, A. ABDURAIMOV, O. O. MAMATKARIMOV I.G. TURSUNOV, R.Kh. KHAMIDOV

> Tashkent State University, Physics Department Tashkent 700095 Republic of UZBEKISTAN e-mail: root @ tsu.silk.org

> > Received 21.12.1997

Abstract

In this paper deformation methods are offered to investigate deep level parameters in semiconductors. It is based on strain parameters measurements of compensated and overcompensated semiconductors. The dynamic changes of current flow in compensated and overcompensated samples of p-type Si : Ni and n-type Si : Mn under uniform pulse hydrostatic compression (UHC) was investigated. It was observed that in p-type Si : Ni samples ionization energy levels Ni at UHC increases, on the contrary in samples n-type Si : Mn it decreases. The ionization energy and baric coefficient of the shift of Ni and Mn levels were bounded.

1. Introduction

Over the pulse regime of the action of uniform hydrostatic pressure (UHP) in semiconductors with deep impurities levels, resulting combined strain-thermo-effect causes additional change of conductivity in semiconductors bound with various degrees of filling of the deep levels [1]. Therefore, a deformation technique is proposed allowing investigation of not only the baric changes in semiconductors but also enables to determine ionization energy, concentration and other deep level parameters without using additional techniques such as the temperature dependence of Hall effect capacity spectroscopy, DLTS, etc. [2].

2. Samples and Methods of Measurements

The present method is based on measuring the strain parameters of compensated and overcompensated semiconductors. During the investigation we used samples of *p*-type Si:Ni and *n*-type Si:Mn silicon with resistivity $\rho = 10^5 \Omega \times cm$ obtained on a monocrystal silicon base, using KEF-15 and KGD-4 technology as described in [3].

The investigated silicon samples had the shape of a parallelepiped with dimensions $2 \times 2 \times 4mm^3$. To measure the temperature of samples during the process a copper/constant thermocouple was tightly pressed to the surface of the sample. To prevent thermal scattering and to increase the accuracy of the temperature measurements the samples were wrapped up with a thermocouple in a thermal-insulation envelope formed of epoxy glue. The reference thermocouple was held at $0^{\circ}C$. Control measurements of the electrical conductivity and temperature of a sample-thermocouple system while under application of pressure impulses showed that they are changed simultaneously over the interval $T = 243 \div 293K$ and $P = (0 \div 5) \times 10^8 Pa$. The required external pressures were produced via installation of a UHP with pneumatic-amplifier [4] which created pressure pulses with slew rate $\partial P/\partial t = 10^8 Pa/s$ in the temperature interval $T = 273 \div 293K$.

3. Experimental Results

I = f(t) kinetics for a *p*-type Si:Ni sample over the range of impulse action (region 1) and while under UHP (region 2) at the initial operating temperature of $T_0 = 273K$ is shown in Figure 1. Measurements showed that when the pressure increases in the interval $P = (0 \div 5) \times 10^8 Pa$ the temperature of samples abruptly increase to T_{max} , a value ranging from 243 K to 293 K and depending on pressure and $\partial P/\partial t$. The value of current in samples increases from $I_0 = 3, 7 \times 10^{-6}A$ to $I_{\text{max}} = 6, 8 \times 10^{-6}A$ according to the temperature of samples (Fig. 1 region 1). After removal of pressure the temperature of a sample relaxed to its static values over during $50 \div 60s$ at $P = (0 \div 5) \times 10^8 Pa$.

Unlike the influence of UHP, when reducing pulsed pressure the value of temperatures and current of samples are first lower to values T_{\min} and I_{\min} , respectively, from which they relax to their initial values, i.e. to T_0 and I_0 (Fig. 1, region 2). Similar dependence of I = f(t) under similar conditions under UHP were obtained for *n*-type Si: Mn samples. Measurements of the Hall effect in *p*-type Si: Ni and *n*-type Si: Mnsamples under UHP impulse action at temperatures T_0, T_{\max} and T_{\min} , i.e. at the extreme point changes of I_{\max} and I_{\min} , showed that the change of current in the samples is essentially due to the change of carriers current concentration ($\approx 96\%$), since under these experimental conditions their mobility changes slightly ($\approx 4\%$).

Figure 1. Kinetics of current flow in the *p*-type Si : Ni samples under pulse action (1) and removal of UHP with $\partial P/\partial t = 10^8 Pa/s$ velocity at initial operating temperature $T_0 = 273K$

4. Experimental Result Processing

The dynamical changes of conductivity of current in overcompensated samples of p-type Si: Ni and n-type Si: Mn for impulse UHP can be presented in the form [6]:

$$I = Ue\mu n(P,T) \times S/L = Ue\mu n_0 [\exp(-E_i - \alpha_i P)/kT] \times S/L,$$
(1)

where U is the voltage applied to sample; S and L are cross-section and length of sample; e, μ, n are charge, mobility and concentration, respectively, of carriers of current, E_i and α_i are values of the energy of an impurity level and pressure of this level, respectively; P is the value of UHP; T is the temperature of a sample; and K is Boltzmann constant. By taking the logarithm and differentiating with respect to temperature expression (1) can be rewritten as:

$$\partial (\ln J) / \partial E = \partial (\ln U e \mu n_0 S / L) / \partial E - k^{-1} (E_i - \alpha_i P) (\partial (1/T) / \partial T).$$
⁽²⁾

Taking into account $\partial (\ln U e \mu n_0 S/L) / \partial T \approx 0$ for ionization energy of impurity levels E_i we have:

$$E_i = -k[\partial(\ln I)/(\partial T)(\partial(1/T)\partial T] + \alpha_i P.$$
(3)

195

From this one can see that E depends on the velocity change of I and T. Temperature dependencies of current in the samples p-type Si: Ni (curve 1 and 2) and n-type Si: Mn (curve 3 and 4) are given in Fig. 2(a). They correspond to the experimental results of relaxed regions 1 and 2 in Fig. 1. Ionization energy levels for Ni and Mn as a function of their baric shift coefficient are defined according to expression (3) and the experimental results are given in Fig. 2. Energy levels $E_{N_i} = 0.42eV$ and $E_{M_n} = 0.52eV$ were composed using $\alpha_{N_i} = 1.2 \times 10^{-11} eV/Pa$ and $\alpha_{M_n} = 1.8 \times 10^{-11} eV/Pa$ respectively. These results confirm those of the authors in [3, 4].

Figure 2. a) Temperature dependence of current in *p*-type Si : Ni samples (1, 2) and *n*-type Si : Mn(3, 4) under UHP (1, 3) action and absence of pressure (2, 4) at $T_0 = 273K$. b) Dependence of amplitude values on current in *p*-type Si : Ni samples on the velocity of UHP pressure change with an amplitude of $P = 5 \times 10^8$ Pa at $T_0 = 273K$

The maximum current as a function of pressure change velocity at UHP $I_{\text{max}} = f(\partial P/\partial t)$ with amplitude $P = 5 \times 10^8 Pa$ in *p*-type Si : Ni samples with initial operating temperature T = 293K is plotted in Fig. 2(b). One can see that the current amplitude maximum values monotonically increases with velocity and, at certain values, the change of current depends on velocity $(\partial P/\partial t = 10^8 Pa/s)$, resulting in the plateau observed in I(P). Analysis of experimental data shows the plate an appears to be independent for $I_{\text{max}} = f(\partial P/\partial t)$ and linked with full atom ionization in the Ni impurity levels in Si.

In the studied system, i.e. p-type Si : Ni, the electrical neutrality equation of carrier current in the region full of "feeble" Ni levels may be written [5]:

$$p = N_A - N_D,$$

where $N_A = N_D + p$ and where N_D is small donors concentration, and N_A is the compensated acceptors of impurities concentration. In investigated samples of p-type

196

Si: Ni the full concentration of electrically active atoms proves to be equal to $3,47 \times 10^{14} cm^{-3}$, and is in good agreement with the date in [6].

5. Conclusion

The studied method of the pulse action UHP may be used successfully to determine some baric deep level parameters via baric measurements in semiconductors.

References

- A. Abduraimov, M. K. Bakhadyrkhanov, A. A. Tursunov, X. M. Iliev, Physics and techniques of semiconductors. 1985, v.19, issue 11, pp.2052-2054 (in Russian).
- [2] L. P. Pavlov, Methods measurement parameters semiconducting materials. Moscow, "Visshaya shkola", 1987, p.238 (in Russian).
- [3] B. I. Boltaks, M. K. Bakhadyrkhanov, S. M. Garodersky and G. S. Kulikov, Compensation silicon, Leningrad, "Nauka", 1972, p.120 (in Russian).
- [4] A. Abduraimov, S. Z. Zainabidinov, O. O. Mamatkarimov, O. Khimmatkulov, T. Y. Khudaiberdenov, Instruments and technique experiment, 1992, v.4, pp. 229-231 (in Russian).
- [5] B. L. Bonch-Bruevich, C. G. Kalashnikov, Physics of semiconductors. M "Nauka", 1990, p.685 (in Russian).
- [6] A. L. Polyakova, The deformation of semiconductors and semiconductor instruments. Moscow, "Energia", 1979, p.166 (in Russian).