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Abstract

In this work, we develop a model for radiant heat transfer calculations inside
spherical and cylindrical spaces. The analysis of the possibility of mirror cone
subreflector applications for uniform flux density attainment is carried out.

A procedure optimizing equiilluminate space forming a search for an indicatrix’s
composition is developed.

1. Introduction

Some ten years ago, tower type power plants solar concentrator were constructed.
Since then much experience has been accumulated with new sugestions for their perfection.

One of the directions for perfection is the system’s optimization, including the
investigation of radiation regime receivers of central power plants. The low efficiency
of first generation solar power plants (SPP), to some extent, is connected with the
utilization of some components of the traditional heat power plant, for example, the
open configuration of receivers. This is the cause for long duration starts and stops and
frequent breakdowns of some elements of SPP. The analysis carried out in [1] of convective
losses in open type receivers mounted on the SPP-5 and “Solar One” and receivers of the
cavity configuration had shown the preference for the last type. Factors such as the
indicatrix of reflection of concentrating systems, geometrical form of the cavity and the
optical parameters of the surface of the receiving panels influence the efficiency of cavity
receivers.
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2. Investigation and Discussion

Investigation of the central receivers after use show a strong dependence of the
structure’s reliability on the uniformity of the radiation flux density supply. In this
article, cavity receivers of cylindrical and spherical forms are considered with the problem
and possibility of applying mirror cones as the functional sub-reflectors to equalize the
nonuniform distribution of radiation flux around of the cavity.

The equation for the density of the resulting radiation at a surface point inside, for
example, a cilindrical receiver, can be presented as:

q(x0) = α

{
q0(x0) +

∫ L

0

ρ ∗ q(x) ∗ dϕdx0−dx +
∫ D/2

0

ρ ∗ q(r) ∗ dϕdx0−dr

}
+

+ α

{∫ L

0

ε ∗ σ ∗ T 4(x)dϕdx0−dx +
∫ D/2

0

ε ∗ σ ∗ T 4(r) ∗ dϕdx0−dr

}
− ε ∗ σ ∗ T 4(x0). (1)

For the bottom part of cylinder:

q(r0) = αT ∗
{
q(r0) +

∫ L

0

ρ ∗ q(x) ∗ dϕdr−dx

}
+ αT ∗

∫ L

0

ε ∗ σ ∗ T 4(x) ∗ dϕdr0−dx −

− ε ∗ σT 4(r0), (2)

where

dϕdr0−dx = 8(
L

D
− x̄) ∗ 4(L/D− x̄)2 + 1− r̄2{

[4(L/D − x̄)2 + 1− r̄2]1/2 − 4r̄2
}3/2

∗ dx

dϕdx0−dx =
{

1− x̄0 − x̄| ∗
2(x̄0 − x̄)2 + 3

2[(x̄0 − x̄)2 + 1]3/2

}
∗ dx̄ (3)

and x̄ = x/D , x̄0 = x0/D and r̄ = 2 ∗ r/D .
The flux density at any given point of the receiver is defined as:

q0 =
∫ ∫

B(ω) ∗ (ω, n̄) ∗X(ω, n̄) ∗ dω. (4)

Model function of the indicatrix of the heliostat field’s reflection is the following:

B =
n+ 2
2 ∗ π ∗ < K > ∗J0 ∗ cosn Θ, (5)
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where K is the average geometrical concentration factor and J0 is the flux density
of solar reflection.

Equations (1) and (2) with registration repeated reflections are solved by the
iterative method and initial density of flux radiation is determined by the method of
tracking ray’s reverse motion.

Calculating with a computer, we get the graphs of dependence of this radiation
density (Figure 1) J/(< K > ·J0 · C1) on the inside wall surface of the cavity (L/R1)
relative the dimension of the inlet (R2/R1) and a model of the distribution of reflection
indicatrix at n = 0, 2. For equal values of relative dimensions of the inlet, maximum flux
density is reached for lesser values of L/R at n=0.
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Figure 1. The radiation flux density distribution on the wall surface of cylindrical cavity, at:

1. R2/R1 = 0.25 B = cos2 Θ 2. R2/R1 = 0.5 B = cos2 Θ 3. R2/R1 = 0.75 B = cos2 Θ 4.

R2/R1 = 0.5 B = 1 5. R2/R1 = 1 B = cos2 Θ

One of the equlization methods for flux density distribution is the usage of the
mirror cone, mounted in the bottom part of the cavity. In view of the fact that the
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crossing of the collected flux
∫

2 ∗ π ∗ r ∗ J(r) ∗ dr and
∫

2 ∗ π ∗R1 ∗ J(z) ∗ dz takes place
in the interval 1 ≤ L/R1 ≤ 1, 5 for discrete distribution of the reflection’s indicatrix,
dimension of the cylindrical cavity is needed to choose in the interval 1.5 ≤ L/R1 ≤ 2.5.

Varying the parameter z defining in the chosen coordinate system for the vertex
of the cone, it can be possible to obtain a broadenning of the radiation flux density
uniformity.
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Figure 2. The radiation flux density distribution on the wall surface of clindrical cavity with

cone subreflector. The system’s parameters are B(Θ) = cosn Θ; R1 = 1; R2 = 0, 5; ZA = 1;

n = 0

In Figure 2 is shown the distribution flux density (L/R1 = 2, zA/R1 = 1, B(Θ) =
C1 ∗ cosn Θ, n = 0, R1 = 1, R2 = 0.5) in a cylindrical cavity.

Figure 3 illustrates the influence of the cone subreflector with respect to the
resulting distribution of radiation flux density in a spherical cavity.

Comparing the results of numerical calculations for the flux density distribution
inside cylindrical and spherical cavities, it can be noted that the existence of the cavity,
in view of the geometrical figure, occupies the interval position so that the flux density
in these cavities will be constant. We suggest an algorithm allowing to determine the
geometry of an equally lighted cavity [2].

Figure 4 shows the inlet of the cavity with the radius R and chosen coordinate’s
system are given.

The flux density at the optional point M can be given in the view J(M, n̄) =
J(r, z, θ). Divide axis OZ into N equal parts for building the lines of equal concentrations.
From the point A under the angle ϕ0 we draw a stright line to a crossing with stright line
AA1 . In the middle of AA1 we recover the normal, with the components ny = cosϕ0 ,
nz = sinϕ0 .
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Figure 3. The radiation flux density distribution in spherical cavity. The systems parameters:

B = cosn Θ; n = 1; R1 = 1; R2 = 0.5; ZL = 1, 7321; ZA = 0. (a. spherical cavity scheme; b.

distribution)
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Change ϕ0 untill the flux density reaches the given value at the point with co-
ordinate yi+ 1

2
, zi+ 1

2
. Further, define the coordinate points yi+1, zi+1 correspondent to

relations:

yi+1 = yi + d ∗ sinϕ0,

(6)
zi+1 = Zi + d ∗ cosϕ0, d = ∆z

ordinate  R
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Figure 5. The lines of equal concentration. (B = cosn θ ; n = 2; Jmax = 0.786)

The process is repeated and the accuracy of the method and thus the amount of
computer time depend on the choice ∆z and frequency of division of ϕ [3]. Figure 5 by
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means of computer graph the lines of equal concentrations created by the geliostat fields
with the reflection indicatix being presented with B = c ∗ cos2 θ .

3. Conclusions

1. The carried out investigation shows that only for cylindrical cavities with selection
of cone subreflectors geometry thermostress relief can be reached on the receiving
panels.

2. A Search algorithm of the cavity geometry, with constant radiation flux density on
the inside surface, has been developed and the variant calculations, showing that
the form of the surface “tracks” the radiation indicatrix given at the inlet to cavity,
and having the more extended form with increasing of the value n .
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