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Abstract

We present the calculation of the one-loop Yukawa coupling beta function to
order Y g2 in a general α gauge, where Y and g are Yukawa and gauge couplings.
We show explicitly how the gauge parameter α cancels out from the beta - function
and demonstrate how some familiar results are obtained from it.

1. Introduction

In the spontaneously broken gauge field theories, of which the Glashow-Weinberg-
Salam model based on the gauge group SU(2)LXU(1) [1], the so called standard model,
is the prototype, the simplest and most elegant way of breaking the symmetry and
generating fermion and gauge boson masses is the Higgs mechanism [2, 3]. In this
mechanism elementary scalar fields, the Higgs fields, are introduced. The Higgs fields
couple gauge invariantly to the gauge bosons through the covariant derivative and to the
fermion chiral multiplets

ΨL =
1
2

(1− γ5)Ψ and ΨR =
1
2

(1 + γ5)Ψ

through the Yukawa couplings of the form

LY = −Y ajk[ΨLjΨRkΦa + h.c.], (1)
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where repeated indices are summed over and h.c. stands for hermitian conjugate. Here,
the indices j and k , and a are group indices in the representation of fermions and scalars,
respectively. The Y a = (Y ajk) are the Yukawa coupling matrices for the scalar field Φa ,
which is a component of a certain Higgs multiplet Φ. Note that Eq. (1) is for a generic
family only.

As is well known, in gauge field theories the evolution of the gauge, scalar, and
Yukawa coupling constants as a function of some arbitrary scale t are given by their
respective beta-functions. It was shown in Ref. [4] for the first time that the evolutions
of the gauge couplings are influenced by the presence of quartic scalar couplings, and vice
versa. A complete treatment of the Higgs phenomena in asymptotically free gauge field
theories at one-loop was presented in Ref. [5], where the Yukawa couplings of the fermions
were also included. In Ref. [5] the one - loop beta - functions were all calculated in the
Landau gauge in which certain diagrams do not contribute. The calculation of the two
- loop contributions to the beta - functions for the Yukawa couplings (which are called
Higgs - Yukawa couplings in Ref. [6]) was undertaken in Refs. [6] and [7]. Unfortunately
there is no uniformity in the literature on the definition of the gauge parameter α . The
gauge field propagator is given by

Dµv(k) =
−i
k2

(
gµv − (1 − α)

kµkv
k2

)
, (2a)

in Ref. [6] and by

Dµv(k) =
−i
k2

(
gµv − α

kµkv
k2

)
, (2b)

in Ref. [7]. Thus in the definition of Ref. [6] Landau gauge corresponds to α = 0, whereas
in the definition of Ref. [7] it corresponds to α = 1. The issue of local gauge invariance [8],
and hence the gauge parameter α independence of all the physical quantities of a gauge
theory is an important one. The LY in Eq. (1) is locally gauge invariant. Therefore
the Yukawa coupling beta-functions βY a that follow from it must be gauge independent,
i.e. must be independent of the parameter α . At the one - loop level, the problem of
gauge parameter independence of βY a arises from those diagrams in which a gauge boson
is exchanged between two particles (see Fig. 1). The contribution of such diagrams is
of order Y g2 , where Y and g are respectively Yukawa and gauge coupling constants.
To our knowledge all the previous one-loop calculations of βY a [5, 9] were done in a
particular gauge, the Landau gauge. The purpose of this paper is to calculate the order
Y g2 contributions to βY a in a general α gauge, to show how the α -dependence cancels,
and to obtain some results from the requirement of gauge independence of the beta-
functions. We will follow the definitions of Ref. [7] in which Landau gauge corresponds
to α = 1.
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(a)

(b) (c)

(d)

(e)

Figure 1. One - loop diagrams contributing to the Yukawa coupling constant renormalization

to order Y g2 .

To avoid any possible confusion about the meaning of Eq. (1), we quote the Yukawa
couplings in the standard model. Denoting the lepton, quark, and the Higgs doublets by

Ψ(`)
L =

(
Ψ(`)

1

Ψ(`)
2

)
L

=
(
`U = ν
`D

)
L

, Ψ(q)
L =

(
Ψ(q)

1

Ψ(q)
2

)
L

=
(
qU

qD

)
L

,

Φ =
(

ΦI

ΦII

)
=
(
φ+

φ0

)
, ΦC = iσ2Φ∗ =

(
ΦCI

ΦCII

)
=
(

φ0

−φ−
)
. (3)

The matrix

σ2 =
(

0 −i
i 0

)
is the usual Pauli matrix and thus ΦC is the charge conjugate of Φ and enables the ”up”
quarks to acquire mass. Before spontaneous symmetry breaking we have for the leptons
of a generic family

LY (`) = −Y I12(`)νL`DRφ
+ − Y II22 (`)`

D

L `
D

Rφ
0 + h.c., (4a)

and for the quarks of a generic family (suppressing the color indices)

LY (qD) = −Y I12(qD)qULq
D
Rφ

+Y II22 (qD)qDL q
D
Rφ

0 + h.c. , (4b)

LY (qU ) = −Y I11(qU )qULq
U
Rφ

0
+ Y II21 (qU )qDL q

U
Rφ
− + h.c. . (4c)

Note that right-handed neutrinos are assumed not to exist in the standard model. Each
Lagrangian in equations (4a), (4b), and (4c) conserves electric charge, baryon and lepton
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numbers, and must be gauge invariant under SU(2)L and U(1) (as well as SU(3)C )
transformations. Gauge invariance requires that

Y I12(`) = Y II22 (`), Y I12(qD) = Y II22 (qD), and Y I11(qU) = Y II21 (qU ).

Each of these Lagrangians gives mass to a different fermion after spontaneous symmetry
braking. As a reminder of this we have written the type of the fermion in parenthesis
in the LY and the Yukawa couplings. In textbooks these Yukawa couplings are usually
denoted by

Y II22 (`) = G`, Y I12(qD) = Y II22 (qD), and Y I11(qU ) = Y II21 (qU ) = GU ,

where it should be understood that for the first family ` = e, D = d , and U = u , for
the second family ` = µ, D = s , and U = c , and for the third family ` = τ, D = b , and
U = t . Ref. [6], however, denotes GD and GU by gB and gT , respectively, in which B
stands for ”bottom” and T for ”top”.

2. Local Gauge Invariance

Let the TAL(R) represent the generators of the gauge group acting on the left-handed
(right-handed) fermions. The TAL(R) are hermitian. Similarly, let the θA represent the
generators of the gauge group acting on the scalars which we assume to be real, so that
the θA are imaginary and asymmetric. The superscript A runs over the generators of
the gauge group. Local gauge invariance requires that the gauge transformed Yukawa
Lagrangian

L′Y = −Y ajk(exp[iξATAL ]ΨL)j(exp[iξATAR ]ΨR)k(exp[iξAθA]Φ)a + h.c. (5)

must be equal to the original one in Eq. (1). In Eq. (5) the ξA are the (real) gauge
transformation parameters whose number equals the number of generators of the gauge
group. Carrying out the transformations in Eq. (5) infinitesimally (i.e. keeping only
those terms that are linear in the ξA ) yields

L′Y = −Y ajk[ΨLj + ΨLm(−iξATAL )mj ][ΨRk + i(ξATAR )kmΨRm][Φa + i(ξAθA)abΦb] + h.c. .
(6)

After a little algebra the extra piece in Eq. (6) that is required to vanish can be cast into

TAL Y
a − Y aTAR = θAabY

b. (7)

This is the gauge invariance condition. This relation will prove to be essential in showing
gauge parameter α independence of the beta function βY a .
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3. The One-Loop Calculation

The order Y g2 diagrams that contribute to the Yukawa coupling constant renor-
malization are depicted in Fig. 1. The renormalization constants ZΨL , ZΨR , ZΦ , Zcoupling
are defined by

Ψun
L,R = Z

1/2
ΨL,R

Ψren
L,R,

Φuna = Z
1/2
Φ Φrena ,

Y aunΨ
un

L Ψun
R Φuna = Y arenZcouplingΨ

ren

L Ψren
R Φrena , (8)

where ”un” and ”ren” stand for ”unrenormalized” and ”renormalized”, respectively. It
follows from (8) that

Y aun = ZcouplingZ
−1/2
ΨL

Z
−1/2
ΨR

Z
−1/2
Φ Y aren

= ZY aY
a
ren. (9)

We have calculated the Yukawa coupling renormalization constants using dimensional
regularization in n = 4 − ε dimensions. The Feynman rules relevant for this calculation
are given in Fig. 2. Of course, the renormalized coupling constants, fermion and scalar
fields, propagators, etc. must be free of any divergences. Any such divergent expression
is rendered finite by subtracting the singularities in some way. The most elegant and
simplest subtraction scheme for our calculation is the minimal subtraction (MS) scheme.
We refer the reader to Ref. [10] for a quick review of the subtraction schemes and
references therein for the details. The calculation of the renormalization constants is
similar to the examples worked out in Chapter 3 of Ref. [11] in which a collection of
integral identities in n dimensions required for such a calculation are also given. The
contribution of each diagram in Fig. 1 is as follows:

Z
(a)
ΨL

= 1− g2

8π2
(TAL T

A
L )(1 − α)

1
ε
, (10a)

Z
(a)
ΨR

= 1− g2

8π2
(TAR T

A
R )(1− α)

1
ε
, (10b)

Z
(b)
Φ = 1 +

g2

8π2
(θAθA)(2 + α)

1
ε
, (11)

Z
(c)
Φ = 0, (12)

Z−1
couplingY

a = (1 + ∆Z(d)
1 + ∆Z(e)

1 )Y a, (13)

where

∆Z(d)
1 Y a =

g2

8π2
(TAL Y

aTAR )(4− α)
1
ε
, (14)
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∆Z(e)
1 Y a =

g2

8π2
θAba(TAL Y

b − Y bTAR )(1− α)
1
ε
. (15a)

It should be kept on mind that to simplify the notation we have omitted the fermion in-
dices j and k in these equations. Thus a term like TAL Y

aTAR actually means TALjmY
a
mnT

A
Rnk .

Eq. (15a) should be simplified by using the gauge invariance condition, Eq. (7). Noting
that θAcbθ

A
baY

c = (θAθA)caY c = C2(S)δcaY a , where C2(S)δca = (θAθA)ca is the quadratic
Casimir invariant in the representation of the scalars. Equation (15a) then becomes

∆Z(e)
1 Y a =

g2

8π2
θAθAY a(1− α)

1
ε
. (15b)

The reader should pay attention to the appearance of the matrix Y a in Eqs. (13)-(15).
Had we done this calculation for an ”up” or ”down” quark, in other words for a diagonal
coupling ha (such as gB or gT ) of the matrix Y a as in Ref. [6], Y a would not have
appeared in these equations. The general case, as treated here, is more demanding and
requires careful handling of the matrices. Now expanding the Z ’s as Z = 1 +Z(1) 1

ε
+ · · ·

and noting that

βY a =
d

d(1/ε)
ZY aY

a, (16)

we get

βY a = Z
(1)
couplingY

a − 1
2

(Z(1)
ΨL

+ Z
(1)
ΨR

+ Z
(1)
Φ )Y a. (17)

Generalizing the gauge group G to a product of Gi factors, the order Y ag2
i contribution

to the βY a is

16π2dY
a

dt
= 16π2βY a =

∑
i,Ai

g2
i [−6TAiL Y aTAiR − 3θAiθAiY a]

+
∑
i,Ai

g2
i [−2TAiL Y aTAiR + TAiL TAiL Y a +

Y aTAR T
Ai
R − θ

AiθAiY ak ](1− α). (18)

In Eq. (18) we have resumed the summation symbol to emphasize the contribution of
each group factor in the product G = G1 ×G2 ×G3 · · · .

4. The Proof of Gauge Independence

Note that in the beta-function in Eq. (18) the gauge parameter α does not cancel
automatically! For α = 1 (Landau gauge) Eq. (18) reduces to the one quoted in the
literature [5, 9]. The sum of the α -terms, or equivalently the coefficient of the (1 − α),
in Eq. (18) is

AβY a =
∑
i,Ai

g2
i [−2TAiL Y aTAiR + TAiL TAiL Y a + Y aTAiR TAiR − θAiθAiY a]. (19)
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It is necessary that AβY a vanishes, so that the beta - function in Eq. (18) is independent
of the gauge parameter α . This is indeed the case. To see this, we apply the gauge
invariance condition, Eq. (7), to the last term of AβY a twice. We get

θAiθAiY a = TAiL TAiL Y a + Y aTAiR TAiR − 2TAiL Y aTAiR , (20)

which cancels the other terms in AβY a . Therefore the βY a are gauge-independent and
given, to this order, by

16π2βY a = −3
∑
i,Ai

g2
i [2TAiL Y aTAiR + θAiθAiY a]. (21)

This is in the form given in references [5] and [9]. Using the gauge invariance relation as
given in Eq. (20) Eq. (21) reduces to

16π2βY a = −3
∑
i,Ai

g2
i [TAiL TAiL Y a + Y aTAiR TAiR ], (22)

which is in the form given in Ref. [12]. Since ΣATATA is proportional to the unit matrix,
Eq. (22) becomes

16π2βY a = −3Y a
∑
i

g2
i

∑
Ai

[TAiL TAiL + TAiR TAiR ]. (23)

For SU(N) groups the Casimir invariants are given by∑
A

(TATA)jk =
N2 − 1

2N
δjk. (24)

It is remarkable that Eqs. (22) and (23) have no reference to the scalars involved in the
Yukawa couplings.

5. Implications of the Gauge Independence

Even though the AβY a of Eq. (19) vanishes due to the gauge invariance of the
Yukawa couplings, we can still obtain interesting, though familiar, information from it.
For simplicity, let us consider flavor groups in fermion and scalar couplings. Furthermore,
let us consider the couplings of a neutral Φa . Due to electric charge conservation and the
fact that such a scalar gives mass to either ”up” or ”down” fermions, depending on the
dimension of the flavor group the Yukawa coupling matrix for such a case takes a form
similar to (for each color)

Y a =

 0 0 0
0 ha 0
0 0 0

 . (25)
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Then AβYa reduces to (dropping the index i and with no summation over j and a)

AβY a = ha
∑
A

[
−2(TAL T

A
R )jj + (TAL T

A
L )jj + (TAR T

A
R )jj − (θAθA)aa

]
= 0, (26)

from which we arrive at the following conclusions (which can be shown to be true for
color groups too):

1) For a vectorlike group GV (in which fermions have vectorial couplings to gauge
bosons) whose generators satisfy TAL = TAR = TA , Eq. (26) reduces to∑

A

(θAθA)aa = 0, (27)

which implies that the scalars must be singlets -i.e. just constant numbers- under the
vectorlike group GV . This is the case for the color group SU(3)c .

2) For a chiral group GL(R) (in which fermions have chiral couplings to gauge
bosons) for which TAR(L) = 0, Eq. (26) reduces to∑

A

(θAθA)aa =
∑
A

(TAL(R)T
A
L(R))jj, (28)

which implies that the scalars which have gauge invariant Yukawa couplings must be in
the same representation as the left-handed (right-handed) fermions. Again this is the case
for the SU(2)L group of the standard model. We should warn the reader, however, that
these results are not general. They are valid only for the type of Yukawa couplings given
in Eq. (1).

6. Discussion

The Yukawa couplings given in Eq. (1) are not the only allowed ones. There are
other possibilities. For example, written in matrix form

LY = −1
2
Y (ΨL)cχΨL + h.c. = −1

2
YΨT

LCχΨL + h.c. (29)

is another possibility. Here, Ψc = CΨT and C is the charge conjugation operator. The
factor of 1

2 is put to avoid double counting. (However, see later for vectorlike groups). For
SU(N) groups, the fermion multiplet ΨL is usually in the fundamental representation n .
The dimensions of the allowed Higgs multiplets are given by the decomposition of n×n :

n × n =
n(n − 1)

2
+
n(n+ 1)

2
.

When the Higgs multiplet χ is in the symmetric representation conjugate to the one whose
dimension is n(n+1)

2
, the neutrinos acquire Majorana masses. The Yukawa couplings in

Eq. (29) will be gauge invariant provided

TAiL Y a + Y a(TAiL )T = θAiab Y
b. (30)
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To order Y g2 , the Yukawa coupling beta-function for this case becomes

βY a =
3
2

∑
i,Ai

g2
i [2TAiL Y a(TAiL )T − θAiθAiY a], (31)

which should be compared with Eq. (21). Using the gauge invariance condition, Eq. (30),
this reduces to

βY a = −3
2

∑
i,Ai

g2
i [TAiL TAiL Y a + Y a(TAiL )T (TAiL )T ]

= −3Y a
∑
i,Ai

g2
i [TAiL TAiL ], (32)

where ∑
A

TATA =
∑
A

(TA)T (TA)T

has been used. This should be compared with Eq. (23) in which either L - handed
or R - handed generators contribute for chiral gauge groups. For vectorlike groups like
SU(3)c Eq. (32) seems to be contributing half of Eq. (23). This is due to the factor of
1
2 introduced in Eq. (29). Therefore this factor should be omitted for vectorlike groups.

Jpi
iδij

pµγu-m
fermion propagator

kµ ν -i
k2

gµγ-α
kµkγ

k2
δAB

gauge boson propagator
BA

bpa

scalar boson propagator

iδab

p2

2ig2gµγ

-igΘab
A (p+q)µ

-igγµ(TA)ij

i(Y a)ij

i

j
a

j

i

A
µ

a
p

b
q

µ A

A

A

µ

ν

Figure 2. The Feynman Rules for fermion - gauge boson - scalar (Higgs) boson interactions.
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