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Abstract

Subband and shallow donor binding energies are calculated. The emphasis is
given on the electric field effects for wires of different shapes. It is shown that the
donor binding energy is sensitive to the interplay of the electric field and geometrical
effects.

PACS No: 73.20.DX;77.30.+d

1. Introduction

Sakaki was the first to suggest mobility enhancement in thin semiconducting wires
[1]. This has increased considerably the theoretical and experimental studies on quantum
well wires [QWW] [2, 3].

Thermopower, carrier mobility and other transport properties have been exten-
sively studied [4-10].

Exciton and shallow donor binding energies have also been investigated [11-15].
However, there has been very limited work on the effects of an external electric field
[16-23].

In the present work, we investigate the effects of an external electric field on donor
binding energies in QWWs with cylindrical and square cross-sections. We have chosen
a system with GaAs quantum well surrounded by AlxGa1−xAs potential barriers in the
∗This work is supported by the Trakya University Research Fund.
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x-y plane. The electron is thus free to move in the z-direction, i.e. along the axis of the
QWW in the absence of a Coulomb centre binding the electron. We consider only an
infinite potential wall model.

The behaviour of EB under an electric field is different for QWWs of rectangular
and cylindrical wires. While the direction of the electric field is immaterial for cylindrical
wires it is very important for wires with rectangular cross-section.

We find that the binding energy of the hydrogenic impurities is a rather sensitive
function of the geometry of the wire especially under the influence of an electric field.
It is found that the electric field effects on EB are extremely sensitive to the impurity
position in or outside the wire.

2. Theory and Calculations

It is convenient to use the cartesian coordinates for wires of rectangular cross section
and cylindrical coordinates for wires of circular cross section. The Hamiltonian for the
wire of rectangular cross section, lying along the z-direction, is

H0 = − h̄2

2m∗

(
∂2

∂x2
+

∂2

∂y2

)
+ V (x, y), (1)

where

V (x, y) =
{
∞ |x| ≥ Lx

2 , |y| ≥
Ly
2

0 elsewhere .
(2)

Thus, the electron is free to move along the z-direction, but constrained along x- and
y-directions. The subband structure of the wire is obtained by variational method using
the following trial wave function:

Ψ0(x, y) = N0 cos
(
πx

Lx

)
cos
(
πy

Ly

)
. (3)

Here, N0 is the normalization constant and subband energy

E0 =
h̄2π2

2m∗

(
1
L2
x

+
1
L2
y

)
,

where we have taken the cross section to be a square with sides Lx = Ly = L .
Next, we calculate the effect of an electric field on subband energies by using the

Hamiltonian
H1 = H0 + η(x cos θ + y sin θ), (4)

where η = |e|F . F is the field strength and θ is the angle between the electric field and
the x -axis. The trial function in this case is modified to be

ψ1(x, y) = N1ψ0(x, y) exp(−β(x cos θ + y sin θ)/L), (5)
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where N1 is the normalization constant and β is the variational parameter.
With the impurity at (xi, yi, 0) the Hamiltonian becomes,

H2 = H1 −
h̄2

2m∗
∂2

∂z2
− e2

ε
√
z2 + (x− xi)2 + (y − yi)2

, (6)

where ε is the static dielectric constant of the medium in which the electron moves. The
trial function for this problem is taken to be

ψ2 = N2ψ1(x, y) exp(−λ
√
z2 + (x− xi)2 + (y − yi)2), (7)

where N2 is the normalization constant and λ is the variational parameter. The binding
energy of the electron is written with respect to the subband energy calculated in the pres-
ence of an applied electric field. Numerical results are found for the GaAs/Ga1−xAlxAs
system.

For cylindrical wires, the Hamiltonian is

H0 = − h̄2

2m∗

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2

)
+ V (r, ϕ), (8)

where

V (r, ϕ) =
{

0, r ≤ d
∞, r ≥ d. (9)

The wave function for the ground state becomes,

ψ0(r, ϕ) = N0J0(r10r) (10)

where r10 ≈ 2.4
d2 .

With an applied electric field in x-y plane, the Hamiltonian becomes,

H1 = H0 + ηr cos(ϕ − θ). (11)

The trial function in this case is taken to be

ψ1 = N1ψ0(r, ϕ) exp(−βr cos(ϕ − θ)/d), (12)

where N1 is the normalization constant and β is the variational parameter.
For an impurity at r = ri , the Hamiltonian becomes

H2 = H1 −
h̄2

2m∗

(
∂2

∂z2

)
− e2

ε
√
z2 + (r − ri)2

. (13)

The trial function for the bound electron is taken to be

ψ2 = N2ψ1(r, ϕ) exp(−λ
√
z2 + (r − ri)2), (14)

where λ is the variational parameter.
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3. Results and Discussion

We have done a series of calculations and investigated the impurity binding energy
as a function of electric field, impurity position and wire dimensions. The parameters
used in numerical calculations are m∗ = 0.067m0, ε = 12.5 which are suitable for
GaAs/AlxGa1−xAs well material. The resulting effective Rydberg is R∗ = e2/(2εa∗) =
5.83MeV, and the effective Bohr radius is a∗ = h̄2ε/(m∗e2) = 98.7Å .

Our results are in perfect agreement with previous calculations without the electric
field. For example, the binding energies are found to be almost identical for wires of
circular and square cross sections if wire dimensions taken to be comparable. As the
diameter of the wire tends to zero the binding energy EB tends to infinity. The work
with a finite potential barrier is in progress. In this case, we expect to find smaller and
finite binding energies in the limit of very small radius.

The impurity binding energy (EB) as a function of the length of the square is
shown in Figure 1 for three different electric field values.
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Figure 1. The binding energy as a function

of side length of the square wire for different

electric fields.

Figure 2. The binding energy as a function

of radius for a cylindrical wire under different

electric fields.

The impurity is taken to be at the centre of the wire. The electric field is taken to
be applied along the positive axis direction with θ = 0. Thus, the electron shifts towards
the negative part of the axis.

The impurity position dependence of the binding energy is shown in Figures 3 and
4 for two types of wires. As expected the binding energy becomes smaller for impurities
located at the boundary of the wires.
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Figure 3. The binding energy as a function

of impurity position along the diagonal of a

square wire (L =
√
πa∗) for different electric

fields.

Figure 4. The binding energy as a function of

impurity position along the radius of a cylin-

drical wire (d = a∗) for different electric fields.
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Figure 5. The binding energy as a function of

impurity position along the x-axis of a square

wire (L =
√
π2a∗) for different electric fields.

Figure 6. The binding energy as a func-

tion of impurity position along the radius of

a cylindrical wire (d = 2a∗) for different elec-

tric fields.
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The impurity position dependence of the binding energy is shown in Figures 5 and
6 when we increase the dimensions of the wire. This produces more complex behaviour
for wires of circular cross section.

The electric field dependence of EB is shown in Figure 7, for three different
impurity positions in a wire of circular cross section. It is seen from this figure that
the binding energy for the impurity at the center of the wire is influenced more from the
electric field, as expected.
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Figure 7. The binding energy as a function of electric field for hydrogenic impurities in a

cylindrical wire (d = a∗) . a, b, and c refer to impurity positions for ri = 0, 0.5a∗ and 3a∗ ,

respectively.
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[6] J. Lee & H.P. Spector, J. Appl. Phys., 57 366 (1985).

[7] G.W. Bryant, Phys. Rev., B29 6632 (1984).

[8] G. Fishman, Phys. Rev., B34 2394 (1986).

[9] B.J. Van Wees, H. Van Houtin, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven,
D. Vander marel & C.T. Foxon, Phys. Rev. Lett., 60 848 (1988).

[10] D.A. Wharam, J.T. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.f. Frost, D.G.
Hasko, D.C. Peacock, D.A. Ritchie & G.A.C. Jones, J. Phys., C21 L209 (1988).

[11] B. Sukumar & K. Navaneethakrishnan, Solid State Commun., 71 681 (1989).

[12] L. Banyai, I. Galbraith, C. Ell & H. Hang, Phys. Rev., B36 6099 (1987).

[13] A.D’Andrea & R. Del Sole, Solid State Commun., 74 1121 (1990).

[14] G.W. Bryant, Phys. Rev., B31 7812 (1985).

[15] F.A.P. Osorio, M.H. Degani & O. Hipolito, Phys. Rev., B37 1402 (1988).

[16] J.A. Brum, Solid State Commun., 54 179 (1985).

[17] M. El-Said & M. Tomak, Phys. Status Solidi (b), 171 K29 (1992).

[18] N. Porras Montenegro, J. Lopez-Gondar, L.E. Oliveira, Phys. Rev., B43 1824 (1991).

[19] B. Sukumar & K. Navaneethakrishnan, Phys. Rev. B41 12911 (1990).

[20] Stefan I. Tsonchev, P.L. Goodfriend, J. Phys. B: At. Mol. Opt. Phys. 25 4685 (1992).

[21] Zhen-Yan Deng, Hong Sun, Shi-Wei Gu, J. Phys.: Condens: Matter, 5 757 (1993).

[22] V. Narayani & S. Sukumar, Solid State Commun., 90 575 (1994).

[23] Huy Thien Cao, D.B. Tran Thoai, Physica, B205 273 (1995).

375


