Tr. J. of Physics 22 (1998) , 519 – 523. © TÜBİTAK

Crystal Data for A₃B₅C₉-Type Ternary Compounds

Hüsnü ÖZKAN, Nizami GASANLY, İbrahim YILMAZ

Physics Department, Middle East Technical University, 06531 Ankara - TURKEY Ali ÇULFAZ Department of Chemical Engineering, Middle East Technical University, 06531 Ankara - TURKEY Vyaceslav NAGIEV

Department of Physics, Baku State University, 370073 Baku - AZERBAIJAN

Received 25.08.1997

Abstract

X-ray powder diffraction data were obtained for Cu₃Ga₅Se₉, Cu₃In₅Se₉, Cu₃In₅Se₉, Cu₃In₅Te₉, Ag₃In₅S₉, Ag₃Ga₅S₉, Ag₃In₅Se₉, and Ag₃Ga₅Te₉ ternary compounds. The data indicate that these compounds crystallize in orthorhombic, monoclinic, orthorhombic, monoclinic, tetragonal, tetragonal, and orthorhombic systems, respectively.

1. Introduction

The possibility of formation of $A_3B_5C_9$ -type ternary compounds (where A = Cu or Ag; B = Ga or In and C = S, Se or Te) has been revealed based on the physico-chemical analysis and the state diagram of ABC_2 -B₂C₃ quasi-binary systems [1]. The analysis of the X-ray powder diffraction data of Cu₃Ga₅Se₉, Cu₃In₅Se₉ and Cu₃In₅Te₉ crystals, obtained by Debye-Scherrer film method, shows that all three compounds crystallize in the hexagonal system with the lattice parameters given in the same order as: a = 8.01, 8.47 and $8.78A^\circ$, and c = 16.46, 17.41 and $18.66A^\circ$ [1]. In a previous paper [2] we have presented the crystal data for Cu₃In₅Se₉ and Cu₃In₅Te₉ compounds. Preliminary indexing of the data indicated them to crystallize in orthorhombic and tetragonal systems, respectively. No other crystal data are available in the literature for these and other members of the ternary compounds stated above.

In this paper we present for the first time the crystal data for $Ag_3In_5S_9$, $Ag_3Ga_5S_9$, $Ag_3In_5Se_9$, and $Ag_3Ga_5Te_9$ ternary compounds and the new crystal data for $Cu_3Ga_5Se_9$ compound. Moreover, previously obtained X-ray powder diffraction data for $Cu_3In_5Se_9$ and $Cu_3In_5Te_9$ compounds were reanalysed, testing all the symmetries by using the latest version of the Treor programs "Treor-90", and revised crystal data are presented for them.

2. Experimental

 $A_3B_5C_9$ -type polycrystals were synthesized from particular high purity elements (at least 99.999%) taken in stoichiometric proportions. Single crystals studied were grown from the polycrystals by a zone crystallization method. The resulting ingots appear greyblack in color, except $Ag_3Ga_5S_9$ which had yellow color. Prepared samples were ground and characterized by X-ray powder diffraction using a Philips diffractometer "PW 1740" with a monochromatized CuK α radiation at scan speed of $0.02^{\circ}2\theta$ /sec.

$h \ k \ l$	$d_{obs}(A^{\circ})$	$d_{calc}(A^{\circ})$	I/I_0
111	3.204	3.204	100
$1 \ 0 \ 2$	1.980	1.980	11
202		(1.957	
>	1.957	{	54
820		1.956	
131		(1.680	
}	1.679	{	19
702		(1.679)	
$12\ 0\ 1$	1.662	1.662	20
$8\ 2\ 2$	1.394	1.395	5
$15 \ 0 \ 1$	1.373	1.373	4
$3 \ 4 \ 0$	1.370	1.371	3
$4\ 4\ 1$	1.280	1.280	5
$3\ 1\ 3$	1.270	1.270	8
$5\ 4\ 1$	1.262	1.261	4

Table 1. X-ray powder diffraction data for Cu₃Ga₅Se₉ compound.

2. Results

X-ray powder diffractograms of $A_3B_5C_9$ -type compounds, which are different from each other, were indexed by using the computer program "Treor-90". The Miller indices (hkl), the observed and calculated interplanar spacings (d) and the relative intensities (I/I_0) of the diffraction lines for Cu₃Ga₅Se₉; Cu₃In₅Se₉ and Cu₃In₅Te₉; Ag₃In₅Se₉ and Ag₃Ga₅S₉; Ag₃In₅Se₉ and Ag₃Ga₅Te₉ are listed in Tables 1, 2, 3 and 4, respectively. The calculated interplanar spacings are in good agreement with the observed ones.

	$ m Cu_3 In_5 Se_9$					$Cu_3In_5Te_9$					
h	k	1	$d_{obs}(A^{\circ})$	$d_{calc}(A^{\circ})$	I/I_0	h	k	1	$d_{obs}(A^{\circ})$	$d_{calc}(A^{\circ})$	I/I_0
1	3	0	3.469	$\left\{\begin{array}{c} 3.470\\ 3.467\end{array}\right.$	100	$\begin{array}{c} 2\\ 0\\ 4 \end{array}$	$\begin{array}{c} 0 \\ 2 \\ 0 \end{array}$	$egin{array}{c} 1 \\ 1 \\ 0 \end{array}$	3.573 2.439 3.088	$3.571 \\ 3.438 \\ 3.091$	$\begin{array}{c} 100\\ 3\\ 5 \end{array}$
1 0	0 3 1	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	3.356	$\begin{cases} 3.358 \\ 3.353 \end{cases}$	77	4	2	0	2.700	2.702	8
0	0	$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$	2.600	$\begin{cases} 2.600\\ 2.595 \end{cases}$	9	4 1 0	2 5 0	$\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$	2.300	$ \left\{\begin{array}{c} 2.299\\ 2.189\\ 2.187 \end{array}\right. $	4 88
-1	2	$\left\{\begin{array}{c} 0 \\ 2 \\ 1 \end{array}\right\}$	3.536	$\left\{\begin{array}{c}2.537\\ \circ 524\end{array}\right.$	11	$\begin{array}{c} 0\\ 2\\ \end{array}$	2 5	2 1	2.034 1.888	2.035 1.888	53
-2 1	$\frac{2}{1}$	$\left\{\begin{array}{c}1\\2\\\end{array}\right\}$	2.155	$\left\{\begin{array}{c} 2.534\\ 2.158\end{array}\right\}$	41		$0\\5$	$\left\{\begin{array}{c}1\\2\end{array}\right\}$	1.865 1.547	$\begin{cases} 1.864 \\ 1.547 \end{cases}$	60 13
2 -2	2	1 J 1	2.111	(2.156)	67	$ 5 \\ 1 \\ 0 $	$5 \\ 1 \\ 2$	1 J 3 3)	1.436	(1.547) 1.436 (1.410)	4
-2 -2	2 3	2 2	2.056 1940	$ \left\{\begin{array}{c} 2.054 \\ 1.940 \end{array}\right. $	72 11	8	2	$\left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$	1.410	{ 1.410	8
-3 -1 -1	$ \begin{array}{c} 2 \\ 1 \\ 7 \end{array} $	1 3 2)	$1.832 \\ 1.753$	1.832 1.753 (1.523	$\begin{array}{c} 40\\ 47\end{array}$	8	5	0	1.269	1.269	4
1	2	$\left\{ \begin{array}{c} 2\\ 3 \end{array} \right\}$	1.523	$\left\{\begin{array}{c} 1.525\\ 1.522\end{array}\right.$	14						
2 -2	75	$\frac{1}{3}$	$1.453 \\ 1.396$	$1.453 \\ 1.396 \\ 1.000$	13 13						
-3 -1	$\frac{3}{4}$	$\frac{3}{4}$	$1.396 \\ 1.396$	$1.369 \\ 1.235$	$\frac{17}{23}$						

Table 2. X-ray powder diffraction data for $Cu_3In_5Se_9$ and $Cu_3In_5Te_9$ compounds.

The determined values of the unit cell parameters are given in Table 5 (where Z is the number of molecules in the unit cell) together with the calculated densities (D_x) of the samples. The uncertainities in the evaluated lattice parameters are quite low. The diffraction and crystal data presented in Tables 1, 2 and 5 indicate that Cu₃Ga₅Se₉, Cu₃In₅Se₉ and Cu₃In₅Te₉ compounds crystallize in orthorhombic, monoclinic and orthorhombic systems, respectively. These findings about the crystal systems differ from the previously published ones reporting all three compounds to be hexagonal [1] and last two compounds to be orthorhombic and tetragonal, respectively [2]. Our revised results for Cu₃In₅Se₉ and Cu₃In₅Te₉ compounds can be explained as follows. It appears that in order to obtain the correct crystal data all the possible symmetries including the lower ones should be tested. Such analysis is automatically done using the "Treor-90" program by giving an initial negative unit cell volume.

The diffraction and crystal data for Ag₃In₅S₉, Ag₃Ga₅S₉, Ag₃In₅Se₉, and Ag₃Ga₅Te₉ presented in Tables 3, 4 and 5 indicate that these compounds crystallize in monoclinic, tetragonal, tetragonal and orthorhombic systems, respectively.

	$ m Ag_3In_5S_9$					Ag ₃ Ga ₅ S ₉					
h	k	1	$d_{obs}(A^{\circ})$	$d_{calc}(A^{\circ})$	I/I_0	h	k	1	$d_{obs}(A^{\circ})$	$d_{calc}(A^{\circ})$	I/I_0
0	2	0	3.827	3.830	29	1	1	2	3.200	3.196	100
1	1	1	3.551	3.547	27	2	0	0	2.882	2.880	16
2	0	1	3.340	3.344	38	0	0	4)		(2.578	
			3.261	3 260	100	Ŭ	Ŭ	Ţ	2.578	}	6
3	1	0	3.141	3.142	44	2	1	0	2.010	2 576	Ŭ
-2	1	1	0.111	0.112	11		1	•)		(2.010	
4	0	0	2.703	2.703	46	2	1	1	2.500	2.499	7
3	3	0)		2.083							
		}	2.083	{	67	2	2	0	2.036	2.036	31
5	1	0		2.080							
		-		-		2	0	4)		(1.921	
2	3	1	2.030	2.029	25			}	1.921	{	48
						3	0	0		1.920	
0	4	0		(1.915		0	0	6)		(1.719	
			1.914	{	91			}	1.717	{	52
5	0	1		1.914		3	1	2		1.717	
-3	3	1		(1.893		2	2	4)		(1.598	
			1.891	{	31			}	1.598	{	9
-3	0	2		1.891		3	2	0		1.597	
1	1	3		1.410		1	1	0	1.584	1.584	16
3	5	0	1.410	1.410	22	4	0	0	1.439	1.440	10
-6	0	2		1.410		2	2	6)		(1.314	
1	1	3	1.251	1.251	26			}	1.313	ł	11
						3	3	2		1.313	
						4	2	0	1.288	1.288	6
						3	1	6)		(1.250	
								Ş	1.250	{	14
						4	2	2 J		1.249	

Table 3. X-ray powder diffraction data for $Ag_3In_5S_9$ and $Ag_3Ga_5S_9$ compounds.

As we have stated above, there is no structural information in the literature for the ternary $A_3B_5C_9$ -type compounds. In our previous studies [3-4] we have reported that the members of the TIBC₂-type compounds have different crystal systems depending on the sizes of the atoms substituted. The variety of the crystal systems found in this study for the different members of $A_3B_5C_9$ -type compounds may also be due to the different sizes of the substituted cations and anions in the compounds.

$Ag_3In_5S_9$						$Ag_3Ga_5S_9$					
h	k	1	$d_{obs}(A^{\circ})$	$d_{calc}(A^{\circ})$	I/I_0	h	k	1	$d_{obs}(A^{\circ})$	$d_{calc}(A^{\circ})$	I/I_0
0	0	3	3.476	3.477	81	0	2	0	3.577	3.582	100
2	0	0	3.357	3.357	100	2	1	1)	3.444	$\int 3.443$	78
2	2	2	3.158	2.160	24	3	0	1)		3.439	
3	0	2)		(2.059		4	0	1	2.984	2.987	12
		}	2.057	{	69						
2	0	4 J		2.057		1	0	2	2.232	2.234	43
3	2	1	1.834	1.833	28	2	0	2)		(2.171	
3	2	2	1.753	1.753	45			}	1.172	{	67
2	1	7	1.335	1.335	18	7	1	0		2.170	
						0	1	1	2.110	2.111	66
						4	1	2)		(1.895	
								Ş	1.894	{	42
						1	2	2)		(1.893	
						3	2	2	1.798	1.797	36

Table 4. X-ray powder diffraction data for ${\rm Ag_3In_5Se_9}$ and ${\rm Ag_3Ga_5Te_9}$ compounds.

Table 5.	Crystal	data for	$A_3B_5C_9$ -type	compounds.
----------	---------	----------	-------------------	------------

$Cu_3Ga_5Se_9$	$Cu_3In_5Se_9$	$Cu_3In_5Te_9$	$Ag_3In_5S_9$	$Ag_3In_5Se_9$	$Ag_3Ga_5S_9$	$Ag_3Ga_5Te_9$
21.947(5)	5.784(4)	12.364(3)	10.813(5)	6.714(2)	5.759(1)	15.94(6)
5.581(1)	13.195(9)	11.118(5)	7.661(4)	6.714(2)	5.759(1)	7.164(8)
3.977(1)	5.327(2)	4.374(1)	4.362(1)	10.430(4)	10.314(3)	4.512(4)
90	102.58(5)	90	91.73(3)	90	90	90
487.21	396.84	601.33	361.17	470.14	342.10	515.27
4.26	6.17	5.28	5.49	5.71	4.69	5.90
C_{2}^1	C_2^1 or	C_{2}^{1}	C_2^1 or	C_4^1 or	C_4^1 or	C_{2}^{1}
- 20	\tilde{C}^1	- 20	\tilde{C}^1	C_4^1	\mathbf{C}_{4}^{1}	- 20
1	1	1	1	1	1	1
	$\begin{array}{c} Cu_{3}Ga_{5}Se_{9}\\ \hline 21.947(5)\\ 5.581(1)\\ 3.977(1)\\ 90\\ 487.21\\ 4.26\\ C_{2v}^{1}\\ 1\end{array}$	$\begin{array}{c c} Cu_3Ga_5Se_9 & Cu_3In_5Se_9\\ \hline 21.947(5) & 5.784(4)\\ 5.581(1) & 13.195(9)\\ 3.977(1) & 5.327(2)\\ 90 & 102.58(5)\\ 487.21 & 396.84\\ 4.26 & 6.17\\ \hline C_{2v}^1 & C_2^1 \text{ or }\\ C_s^1 & C_s^1\\ 1 & 1 \end{array}$	$\begin{array}{c ccccc} Cu_3Ga_5Se_9 & Cu_3In_5Se_9 & Cu_3In_5Te_9 \\ \hline 21.947(5) & 5.784(4) & 12.364(3) \\ 5.581(1) & 13.195(9) & 11.118(5) \\ 3.977(1) & 5.327(2) & 4.374(1) \\ 90 & 102.58(5) & 90 \\ 487.21 & 396.84 & 601.33 \\ 4.26 & 6.17 & 5.28 \\ \hline C_{2v}^1 & C_2^1 \text{ or } & C_{2v}^1 \\ \hline C_{2v}^1 & C_s^1 & \\ 1 & 1 & 1 \end{array}$	$\begin{array}{ccccccc} Cu_3Ga_5Se_9 & Cu_3In_5Se_9 & Cu_3In_5Te_9 & Ag_3In_5S_9 \\ \hline 21.947(5) & 5.784(4) & 12.364(3) & 10.813(5) \\ \hline 5.581(1) & 13.195(9) & 11.118(5) & 7.661(4) \\ \hline 3.977(1) & 5.327(2) & 4.374(1) & 4.362(1) \\ 90 & 102.58(5) & 90 & 91.73(3) \\ 487.21 & 396.84 & 601.33 & 361.17 \\ \hline 4.26 & 6.17 & 5.28 & 5.49 \\ \hline C_{2v}^1 & C_2^1 & C_2^1 & C_2^1 & C_2^1 & 0 \\ \hline C_{2v}^1 & C_s^1 & C_s^1 & 0 \\ \hline 1 & 1 & 1 & 1 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

References

- V.I. Tagirov, N.F. Gakhramanov, A.G. Guseinov, F.M. Aliev and G.G. Guseinov, Sov. Phys. Crystallogr., 25 (1980) 237.
- [2] M. Parlak, C. Ercelebi, I. Gunal, H. Ozkan, N.M. Gasanly and A. Culfaz, Cryst. Res. Technol., 32 (1997) 395.
- [3] N.M. Gasanly, H. Ozkan and A. Culfaz, Cryst. Res. Technol., 30 (1995) 109.
- [4] N.M. Gasanly, H. Ozkan and A. Culfaz, Phys. Status Solidi (a), 151 (1995) K23.