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Abstract

Transport solutions to the monoenergetic constant source and the Milne prob-
lems for the forward-backward-isotropic scattering (FBIS) kernel are obtained by
method of singular expansion modes. The monoenergetic linear transport equation
for extremely anisotropic scattering with constant source is reduced to a transport
equation with isotropic scattering. The expansion coefficient is obtained in a form in-
volving exact integral equations and determined by the accompanying new boundary
conditions and the half-range orthogonality relations. In the zeroth order approx-
imation, the analytical expressions for neutron density and the emergent angular
distributions are also obtained as a function of forward scattering.

1. Introduction

The Milne as a constant source problem, involve the search for angular density
distribution functions in a half space, through which neutrons diffuse from a source at
+∞ and from a uniform isotropic source present in the right half-space, respectively. In
both problems half of space is a vacuum and therefore a vacuum boundary condition
should be imposed. Solutions to problems involving angular density and for isotropic
scattering are well known [1].

The problem of finding the angular density for the FBIS kernel, which is used in
many physical problems, requires the solution of the following equation:

µ
∂Ψ(x, µ)
∂x

+ Ψ(x, µ) =
ac

2

∫ +1

−1

Ψ(x, µ′)dµ′ + bcΨ(x, µ) + dcΨ(x,−µ) + S, (1)

where
Ψ(0, µ) = 0, µ > 0. (2)
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Ψ(x, µ) is the one-speed angular density with distances is measured in units of mean-free
path, c is the number of secondaries after collision, and a, b, d are the isotropic, forward
and backward scattering parameters.

From the normalization of the scattering kernel,

a+ b+ d = 1. (3)

The scattering parameters a, b, d assume the following values for three important
scattering conditions:

1. a = 1− α, b = α, d = 0 isotropic scattering with forward scattering;

2. a = 1− α, b = 0, d = α isotropic scattering with backward scattering;

3. a = 1− 2k, b = k + α, d = k − α forward scattering with backward scattering,

where 0 ≤ α ≤ 1, −α ≤ k ≤ α in each case.
Eq. (1) and the boundary condition in Eq. (2) can be written as

µ
∂Φ(x, µ)
∂x

+ Φ(x, µ) =
ac

2

∫ +1

−1

Φ(x, µ′)dµ′ + bcΦ(x, µ) + dcΦ(x,−µ), (4)

where
Φ(0, µ) = −k, µ > 0, (5)

and
Ψ(x, µ) = k + Φ(x, µ), k =

s

1− c . (6)

The solution of the form
Φ(x, µ) = e

−x
ν Φ(µ) (7)

leads to (
1− µ

ν

)
φν(µ) − bcφν(µ) =

ac

2
+ cdφν(−µ), (8)

where φν denotes the eigenfunctions corresponding to the eigenvalues ν , normalized by∫ +1

−1

φν(µ)dµ = 1. (9)

The solution to Eq. (8) for the eigenfunctions φν(µ) may easily be obtained in
terms of the eigenfunctions of the isotropic scattering:

φν(µ) = Aφ′ν(µ) +Bφ′ν(−µ), (10)

where
φ′ν(µ) =

c′ν ′

2
1

ν ′ − µ (11)
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and
c′ =

ac

1− (b + d)c
, (12)

ν ′ = [(1− bc)2 − c2d2]
1
2 ν, (13)

A =
1
2

[
1 +

(
1− bc− cd
1− bc+ cd

) 1
2
]
, (14)

B =
1
2

[
1−

(
1− bc− cd
1− bc+ cd

) 1
2
]
. (15)

Thus we can rewrite the angular flux as

Φν(x, µ) = AΦ′ν(x′, µ) + Bφ′ν(x′,−µ), (16)

and
Φν(x,−µ) = AΦ′ν(x′,−µ) +Bφ′ν(x′, µ), (17)

where
Φ′(x′, µ) = Φis,c

′

ν′ (x′, µ) (18)

describes the isotropic scattering and

x′ = [(1− bc)2 − c2d2]
1
2x. (19)

Note that Eqs. (16) and (17) can also be written as

Φ′(x′, µ) =
1

A− B [AΦν(x, µ)− BΦν(x,−µ)] (20)

Φ′(x′,−µ) =
1

A −B [AΦν(x,−µ)− BΦν(x, µ)]. (21)

Using the boundary condition in Eq. (5) and Eqs. (20 and (21) we obtain

Φ′(0, µ) =
1

A− B [−Ak − BΦν(0,−µ)], (22)

Φ′(0,−µ) =
1

A− B [AΦν(0,−µ) +Bk], (23)

or
Φ′(0, µ) + A

A−Bk

Φ′(0,−µ)− B
A−B k

= −B
A
. (24)

Eq. (24) express the new boundary condition. That is, the constant source boundary
condition for extremely anisotropic scattering. If a = 1 and b = d = 0, Eq. (24),
reduces to the usual constant source boundary condition for isotropic scattering [1]. On
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the other hand if k = 0, it becomes a boundary condition for the Milne problem for
isotropic scattering with backward scattering, and for a = 1, b = d = 0 reduces to the
usual boundary condition for isotropic scattering. Now the problem is to solve Eq. (4)
with the new boundary condition given in Eq. (25) and the transformed Eqs. (20) and
(21).

2. Expansion Coefficients for the Milne and the Constant Source Problems

Solutions to the Milne and constant source problems can be taken as the linear
combination of solutions which vanish at infinity plus qΦ′0−(x, µ), or the transformed
singular normal modes, [1, 37, 38]:

Φ′(x′, µ) = qΦ′0−(x′, µ) + a0+Φ′0+(x′, µ) +
∫ +1

0

C(ν ′)Φ′ν′(x
′, µ)dν ′. (25)

(q, k) = (1, 0), (0, k) denote the conditions for the Milne and the constant source problems,
respectively. Substituting Eq. (25) into Eq. (24), we obtain

(qA+Ba0+)Φ′0−(µ) + (qB + Aa0+)Φ′0+(µ) +
∫ +1

0

C(ν ′)[AΦ′(µ) +BΦ′(−µ)]dν ′ + k = 0.

(26)
The expantion coefficients a0+ and C(ν ′) may be evaluated from the orthogonality
relations [1] as

a0+ = q
BX′(ν0)− AX′(−ν0)

BX′(−ν − 0)− AX′(ν0)
− B

ν ′0

∫ 1

0
C(ν ′)ν ′X′(−ν)dν ′

BX′(−ν0)− AX′(ν0)

− 2k
c′ν ′0

1
BX′(−ν0) −AX′(ν0)

(27)

and

qAc′ν ′′ν ′0X
′(−ν0)Φ′0−(ν ′′) + qB

BX′(ν0)−AX′(−ν0)
BX′(−ν0)− AX′(ν0)

c′ν ′′ν ′0X
′(−ν0)Φ′0−(−ν ′′)

+
∫ 1

0

C(ν ′)
[
Bc′ν ′′

2
Φ′−ν(ν ′′)(ν ′0 + ν ′′)X′(−ν)

− B2 c
′ν ′0ν

′ν ′′X′(−ν)X′(−ν0)
BX′(−ν0)− AX′(ν0)

Φ′0−(ν ′′)
]
dν ′

+
AC(ν ′′)W (ν ′′)N(ν ′′)

ν ′′
− 2k

Bν ′′ν ′0X
′(−ν0)Φ′0−(−ν ′′)

BX′(−ν0) −AX′(ν0)

+ k
c′ν ′′

2
= 0 (28)
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where

X′(ν0) = X(c′, ν ′0),

X(z) =
∫ 1

0

γ(µ)
µ − z dµ,

γ(ν ′) =
w(ν ′)
ν ′0 − ν ′

,

w(ν ′) =
c′ν ′

2
1

X′(−ν)(ν ′0 + ν ′)(1 − c′) ,

N(ν ′) = ν ′[(1− c′ν ′ tanh−1 ν ′)] +
c′2π2ν ′2

4
. (29)

To a first order approximation, neglecting the integral term in Eq. (28), we obtain

C(ν ′) = − ν ′

AW (ν ′)N(ν ′)
[
qAc′ν ′ν ′0X

′(−ν0)Φ′0−(ν) +Bc′ν ′ν ′0X
′(−ν0)Φ′0−(ν)

q

[
BX′(ν0)− AX′(−ν0)
BX′(−ν0) −AX′(ν0)

]
− k

[
2Bν ′X′(−ν0)Φ′0−(ν)
BX′(−ν0)− AX′(ν0)

− c′ν ′

2

]]
. (30)

Substituting Eq. (30) into Eq. (27), the coefficient a0+ takes the form

a0+ =
1

BX′(−ν0)−AX′(ν0)
[qBX′(ν0)− qAX′(−ν0) + qBc′(1− c′)ν ′0X′(−ν0)[

1 + q
B

A

BX′(ν0) −AX′(−ν0)
BX′(−ν0)−AX′(ν0)

] ∫ 1

0

ν ′X′2(−ν)
(1− c′ν ′ tanh−1 ν ′)2 + ( c′πν′2 )2

dν ′

−B
2

A
k

∫ 1

0

2ν ′X′(−ν0)X′2(−ν)(1− c′)
[BX′(−ν0) −AX′(ν0)][(1− c′ tanh−1 ν ′)2 + ( c′πν′

2
)2]
dν ′

B

A

k

ν ′0

∫ 1

0

ν ′(ν ′0 + ν ′)X′2(−ν)(1− c′)
(1− c′ tanh−1 ν ′)2 + ( c′πν′2 )2

dν ′ − 2k
c′ν ′0

. (31)

As a further approximation, neglecting the integral terms in Eq. (31), we obtain

a0+ =
1

BX′(−ν0)− AX′(ν0)

[
BqX′(ν0) −AqX′(−ν0) − 2k

c′ν ′0

]
. (32)

For isotropic scattering with forward scattering, that is for d = 0 (A = 1, B = 0)a0+ in
Eq. (32) turns to be

a0+ = q
X′(−ν0)
X′(ν0)

+ k
2

c′ν ′0X
′(ν0)

. (33)
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GÜLEÇYÜZ, KAŞKAŞ

3. The Density and the Emergent Angular Distributions

From Eqs. (6), (16), (25) for the constant source problem (q = 0) and for forward
scattering with isotropic scattering (a = 1− α, b = α, d = 0) we obtain

Ψ(x, µ) = k + a0+Φ′0+(x′, µ) +
∫ +1

0

C(ν ′)Φ′ν′(x
′, µ)dν ′. (34)

the boundary conditions in Eq. (2) leads to

Ψ(0, µ) =
k

X′(µ)(ν ′0 − µ)
, µ < 0. (35)

Similarly, for q 6= 0, k 6= 0 the same boundary conditions gives

Ψ(0, µ) =
c′ν ′0

2
a0+

ν ′0 − µ
X′(ν0)
X′(µ)

+
c′ν ′0

2
1

µ+ ν ′0

X′(−ν0)
X′(µ)

, µ < 0. (36)

Replacing a0+ in Eq. (33) into Eq. (36), Ψ(0, µ) expresses as

Ψ(0, µ) =
k

X′(µ)(ν ′0 − µ)
+ q

c′ν ′2

ν ′20 − µ2

X′(−ν0)
X′(µ)

, µ < 0. (37)

Neutrons streaming parallel to the interface can be obtained from Eq. (37) using the
identity

X′2(0) =
1

ν ′20 (1− c′) (38)

as

Ψ(0, 0) =
sν ′0

(1− c′) 1
2 (ν ′0 − µ)

+ qc′ν ′0(1− c′) 1
2X′(−ν0). (39)

Similarly, using Eq. (37) for the density at the interface

ρ(0) = 2π
∫ 0

−1

Ψ0(0, µ)dµ (40)

we obtain
ρ(0)
4π

=
s

c

[
1

(1− c′) 1
2
− 1
]

+ qν ′0X
′(−ν0)(1 − c′) 1

2 . (41)
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4. Conclusion

We have studied the solution of the linear transport equation for the monoenergetic
constant source and the Milne problems for forward-backward isotropic scattering kernel.
For isotropic scattering, the solutions of the two problems are known. For isotropic
scattering with a backward leak the solution of the Milne problem is also studied. In this
work for the FBIS scattering kernel using the method of elementary solutions and the
transformed new boundary conditions, the expansion coefficients for the angular density
for both Milne and the constant source problem are calculated in the form of exact integral
equations. The density and the angular distributions are also obtained for the FIS kernel.
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