Proof. Write the difference as

$$
\int_{0}^{\frac{r}{2}} d \xi\left[\frac{1}{\left|1-\frac{\xi}{r}\right|^{\alpha-1}}-1\right] \frac{1-\cos (\xi)}{\xi^{2}}+\int_{\frac{r}{2}}^{\infty} d \xi \frac{1-\cos (\xi)}{\xi^{2}}
$$

Then observe that

$$
\left|\int_{\frac{r}{2}}^{\infty} d \xi \frac{1-\cos (\xi)}{\xi^{2}}\right| \lesssim \frac{1}{r^{1-\varepsilon}} \int_{0}^{\infty} d \xi \frac{1-\cos (\xi)}{|\xi|^{1+\varepsilon}}
$$

and

$$
\begin{aligned}
\left|\int_{0}^{\frac{r}{2}} d \xi\left[\frac{1}{\left|1-\frac{\xi}{r}\right|^{\alpha-1}}-1\right] \frac{1-\cos (\xi)}{\xi^{2}}\right| & \lesssim \int_{0}^{\frac{r}{2}} d \xi \frac{\left.| | r\right|^{\alpha-1}-|r-\xi|^{\alpha-1} \mid}{|r-\xi|^{\alpha-1}} \frac{1-\cos (\xi)}{\xi^{2}} \\
& \lesssim \int_{0}^{\frac{r}{2}} d \xi \frac{1-\cos (\xi)}{|r-\xi||\xi|} \lesssim \frac{1+|\log r| 1_{\{r>1\}}}{r}
\end{aligned}
$$

hence the conclusion.

Lemma 2.6. Given $\alpha \in(0,2)$ and $0<\varepsilon<\min (\alpha, 1)$, one has, for all $t>0, n \geq 0$ and $1<r<2^{n}$, $\left|\int_{0}^{2^{n}-r} \frac{d \xi}{|\xi+r|^{\alpha-1}|\xi+2 r|} \frac{1-\cos (t \xi)}{\xi^{2}}-\frac{1}{2 r^{\alpha}} \int_{0}^{\infty} d \xi \frac{1-\cos (t \xi)}{\xi^{2}}\right| \leq c_{\alpha, \varepsilon}\left[\frac{t^{\varepsilon}}{r^{1+\alpha-\varepsilon}}+\frac{t^{\varepsilon}}{r^{\alpha}\left|2^{n}-r\right|^{1-\varepsilon}}\right]$.
Proof. Let us decompose the difference as

$$
\begin{aligned}
\int_{0}^{2^{n}-r} d \xi\left[\frac{1}{|\xi+r|^{\alpha-1}}\right. & \left.-\frac{1}{r^{\alpha-1}}\right] \frac{1-\cos (t \xi)}{|\xi+2 r| \xi^{2}} \\
& +\frac{1}{r^{\alpha-1}} \int_{0}^{2^{n^{n}-r}} d \xi\left[\frac{1}{|\xi+2 r|}-\frac{1}{2 r}\right] \frac{1-\cos (t \xi)}{\xi^{2}}-\frac{1}{2 r^{\alpha}} \int_{2^{n}-r}^{\infty} d \xi \frac{1-\cos (t \xi)}{\xi^{2}}
\end{aligned}
$$

Then observe that

$$
\begin{aligned}
\left|\int_{0}^{2^{n}-r} d \xi\left[\frac{1}{|\xi+r|^{\alpha-1}}-\frac{1}{r^{\alpha-1}}\right] \frac{1-\cos (t \xi)}{|\xi+2 r| \xi^{2}}\right| & \lesssim \frac{1}{r^{\alpha}} \int_{0}^{\infty} \frac{d \xi}{|\xi+2 r|} \frac{1-\cos (t \xi)}{|\xi|} \\
& \lesssim \frac{1}{r^{1+\alpha-\varepsilon}} \int_{0}^{\infty} d \xi \frac{1-\cos (t \xi)}{|\xi|^{1+\varepsilon}}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{r^{\alpha-1}}\left|\int_{0}^{2^{n}-r} d \xi\left[\frac{1}{|\xi+2 r|}-\frac{1}{2 r}\right] \frac{1-\cos (t \xi)}{\xi^{2}}\right| & =\frac{1}{2 r^{\alpha}}\left|\int_{0}^{2^{n}-r} d \xi \frac{\xi}{|\xi+2 r|} \frac{1-\cos (t \xi)}{\xi^{2}}\right| \\
& \lesssim \frac{1}{r^{1+\alpha-\varepsilon}} \int_{0}^{\infty} d \xi \frac{1-\cos (t \xi)}{|\xi|^{1+\varepsilon}}
\end{aligned}
$$

Finally, one has of course

$$
\left|\int_{2^{n}-r}^{\infty} d \xi \frac{1-\cos (t \xi)}{\xi^{2}}\right| \lesssim \frac{1}{\left|2^{n}-r\right|^{1-\varepsilon}} \int_{0}^{\infty} d \xi \frac{1-\cos (t \xi)}{|\xi|^{1+\varepsilon}}
$$

3. Study of the (Deterministic) Auxiliary equation

Let us now turn to the analysis of the deterministic equation associated with our quadratic model (1), that is the equation

$$
\left\{\begin{array}{l}
\partial_{t}^{2} v-\Delta v+\rho^{2} v^{2}+(\rho v) \cdot \boldsymbol{\Pi}^{\mathbf{1}}+\boldsymbol{\Pi}^{2}=0, \quad t \in[0, T], x \in \mathbb{R}^{d} \tag{40}\\
v(0, .)=\phi_{0}, \partial_{t} v(0, .)=\phi_{1}
\end{array}\right.
$$

where $\boldsymbol{\Pi}^{\mathbf{1}}, \boldsymbol{\Pi}^{\mathbf{2}}$ are two (fixed) elements living in appropriate Sobolev spaces. We are actually interested in the exhibition of a unique (local) mild solution to (40), which will be achieved by

