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Abstract

Computer simulation techniques based on discrete lattice approach and empirical
many-body potentials have been used to study the structure and energy of Σ = 5,
and Σ = 13 coincident site lattice (001) twist boundaries in three fcc metals. Energy
computed for Σ = 5 boundary in copper is 17.5 % less than the earlier result obtained
by using pair potential. However the present calculations of twist boundary energies
are somewhat higher than the results obtained using embedded atom method.

1. Introduction

The understanding of the atomic structure of grain boundaries is a necessary pre-
cursor for the development of microscopic theories of boundary characteristics. For this
reason the grain boundary structures have been investigated by many research workers.
Number of experimental techniques have been applied to determine the structure of grain
boundaries [1-6]. The relationship between physical properties and structure of the grain
boundaries have also been theoretically investigated [7-9]. The Coincident Site Lattice
(CSL) model [10], widely used, focuses on the misorientation relationship between the
two halves of a bicrystal in terms of rotation of two interpenetrating crystal lattices. The
inverse density of CSL sites Σ is mostly used to correlate the structural properties of the
boundaries.

The crucial decision to simulate a specific type of defects, in crystal, is the choice of
an appropriate interatomic potential. All the potentials increase sharply for decreasing
distance. The grain boundary energy is almost completely controlled by the strong repul-
sion between the boundary atoms which are at distances closer than those in the perfect
∗Permanent address: Govt. K.F. College Rahim-Yar-Khan, Pakistan
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crystal. Many-body potentials for fcc metals have been developed by Ackland et.al. [11],
according to which the energy of the ith atom is:

Ui =
1
2

∑
j

V (rij)−

∑
j

φ(rij)

1/2

,

where rij is distance between atoms i&j. The summation extends to all atoms of the
system. The six cubic spline pair potential function V (r) is given as:

V (r) =
6∑

k=1

ak(rk − r)3 H(rk − r)

and two cubic spline embedding cohesive potential φ is:

φ(r) =
2∑

k=1

Ak(Rk − r)3 H(Rk − r),

where rk, Rk are knot points and H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 0. The
coefficients a1, a2, . . . , a6, A1 and A2 were determined by fitting to the lattice parameter
a, the cohesive energy Ec, the elastic constants C11, C12 and C44, the relaxed vacancy
formation energy Ef and the stacking fault energy. The values of these coefficients for
various fcc metals are given in reference [11].

The possible structure of twist boundaries in copper have been simulated by Wolf
[7, 9] employing the Embedded Atom Method (EAM) and Lennard-Jones (LJ) potential.
Unfortunately, both of the potentials give zero energy for the Σ = 3 (111) twist boundary.
Many-body potentials, described above, have successfully been applied to simulate the
structure and energy of twin boundaries [12], twin-vacancy interaction [13] and various
(111) twist boundaries [14]. The Σ3(111) twist boundary energy in gold, computed by this
potential, is 31.71 mJ/m2 [14] which lies within the experimental values 30− 40mJ/m2

compiled by Gallagher [15]. Therefore it was decided to simulate (001) twist boundaries
using the many-body potential proposed by Ackland et.al. [11]. The present paper
includes low energy structures of Σ = 5,Σ = 17 and Σ = 13 CSL (001) twist boundaries
corresponding to misorientation angles of 36.87◦, 28.07◦ and 22.62◦ in copper, silver and
gold. The computational procedures adopted and results obtained are described in the
next section while significance of these results is discussed in the last section.

2. Computational Method and Results

The model fcc crystal used for simulation was generated in the form of a square prism
with three mutually perpendicular axes. The atoms in the computational region were
free to move under the applied many-body potential. This computational region was
surrounded by a thick mantle region such that the outer atoms of the computational cell
have full quota of their neighbors. Depending on the boundary conditions, the atoms
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of the mantle region may or may not be allowed to move. The appropriate boundary
conditions for simulation of planner defects, are to keep the faces parallel to the interface
fixed while periodic boundary conditions be imposed on rest of the faces.

A twist boundary can readily be introduced into the model without altering its shape.
In practice, the twisted model was generated from a single crystal by displacing the non-
CSL sites on one side of the interface through minimum magnitudes. The periodic bound-
ary conditions normal to the interface effectively simulate the infinite twist boundary, thus
giving the more realistic results.

*

* *

*

*

[310]

[130]

Figure 1. Arrangements of atoms in the 1st and 2nd neighboring planes above the boundary,

represented by squares & circles, of the twisted crystal model. The arrows represent the compo-

nents of displacements (magnified ten times) parallel to (001) during relaxations. The CSL sites

are indicated by *.

2.1. Σ = 5 (001) Twist Boundary

In order to simulate Σ = 5(001) twist boundary, the model crystallite constructed
was a rectangular block of 300 moveable atoms surrounded by 4086 atoms in the mantle.
The computational cell was comprised of 10(130), 10(31̄0) and 60(001) planes. The faces
(130) and (31̄0) were subjected to periodic boundary conditions while (001) faces were
simulated under fixed boundary requirements. The twist boundary was generated by
shuffling of non-CSL atoms within (001) planes by proper magnitudes, in one half of the
model.

In order to obtain minimum energy configuration the model was allowed to relax.
Studying the resulting configuration of the atoms, two types of distinct displacements for
CSL and non-CSL are noted to occur. The displacements for CSL sites are all perpendic-
ular to the (001) plane. However, displacements for the non-CSL sites have components
both parallel and normal to this plane. Equal and opposite displacements arose for equiv-
alent sites on both sides of the interface. The magnitude of displacements for the atoms
in the plane adjacent to the boundary are almost four times as compared to the displace-
ments of the atoms in the next neighboring planes. The displacements occurred during
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relaxation in the adjacent two planes of one side of the interface are shown in Figure
1. Of course the next neighboring planes were found to have insignificant displacements.
The non-CSL atoms of both the planes are rotated clockwise about CSL sites of the 2nd
plane. The relaxed structure of the Σ5 twist boundary in copper is shown in Figure 2.

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+

+
+

+

+
+

+
+

+
+

++

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+ +

+
+

+

[3,1,0]

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_ _ _ _ _ _ _4

3

2

1

0

-1

-2

-3

-4
-4 -3 -2 -1 0 1 2 3 4

[1,3,0]

_ _ _ _ _ _ _

Figure 2. A relaxed structure of Σ5 twist projected on the (001) boundary plane. Two atomic

planes just below the boundary are indicated by + and .

In order to eliminate compressive strain around the boundary, a plot of displacements
of individual (001) planes normal to the interface was sketched. The appropriate amount
of magnitude by which the grains must be moved apart was determined [12] to be 0.128a,
0.118a and 0.116a for copper, silver and gold, respectively. After applying the above
expansions, the twist boundary energies for three metals are found to be 998.75, 710.58
and 726.67 mJ/m2.

2.2. Σ = 17 (001) Twist Boundary

To study Σ = 17(001) twist boundary, a rectangular crystallite of atoms with 34(41̄0),
34(140) and 32(001) planes was generated. Sufficient number of mantle atomic planes
were added on all sides of the computational model. The faces (41̄0) and (140) were
kept under cyclic boundary conditions. The (001) faces being parallel to the boundary
were simulated with fixed atoms in the mantle region. The twist boundary was again
created by minimum atomic shuffle, of non-CSL atoms, at the middle of the model in
[001] direction.

Minimum energy configuration of the twisted crystallite obtained by relaxing it through
the many-body potential is shown in Figure 3. For the CSL and non-CSL sites, here again,
two distinct types of displacements were noted to occur. Equal and opposite displace-
ments occurred for equivalent sites on both sides of the interface are nearly twice those in
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the next neighboring planes. The non-CSL atoms moved clockwise around the CSL sites.
The expansions of the model, to eliminate the strain at the boundary, in [001] direction
were calculated to be 0.106a, 0.100a and 0.100a for copper, silver and gold respectively.
The boundary energies so obtained are 910.34, 667.17 and 655.49 mJ/m2, respectively,
for the three metals.

2.3. Σ = 13(001) Twist Boundary

To simulate the Σ = 13(001) twist boundary a rectangular crystallite of atoms
bounded by (51̄0), (150) and (001) faces, was generated. The computational cell of
moveable atoms consisted of 26(51̄0), 26(150) and 60(001) planes. The mantle atoms
on the (001) faces were kept fixed while those on the remaining faces were simulated
under periodic boundary conditions. The twist boundary was created at the middle of
the model in [001] direction by applying minimum atomic shuffle of non-CSL sites on one
half of the model.

The model was allowed to relax to attain the minimum energy configuration (Figure
4). The results reveal that two distinct types of displacements for CSL and non-CSL sites
occur as in the cases of Σ = 5 and Σ = 17 twist boundaries. The large displacements
are associated with atoms in the first plane, whereas the next planes observe minor
displacements. It has further been noted that the non-CSL atoms of the 1st and 2nd
planes are rotated clockwise about CSL sites of the 2nd plane.

The compressive strain near the boundary was removed through expansions of the
model by 0.116a, 0.103a and 0.102a for copper, silver and gold respectively in [001]
direction. The twist boundary energies for these metals, after applying above expansions,
are 834.37, 602.14 and 585.31 mJ/m2, respectively.
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Figure 3. Relaxed structure of the two neighboring planes of the Σ17 twist boundary projected

on the (001) plane.
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Figure 4. A relaxed structure of Σ13 twist projected on the (001) plane.

3. Discussions

The atomic structure of (001) twist boundaries have been explored with misorienta-
tion angles of 36.87◦, 28.07◦ and 22.62◦ corresponding to Σ = 5,Σ = 17 and Σ = 13.
The relaxed boundary structures are shown in Figures 2 to 4 and the energies obtained
are summarized in Table 1. The results provide sufficient structural information. The
displacements occurred during relaxation are all plausible in terms of the structure of
the interface. Non-CSL atoms of the planes adjacent to the boundary move apart during
relaxation as they are much closer than the nearest neighbor separation. The results are
acceptable because of the fact that atoms located at crystallographically equivalent sites
are displaced identically. They are also consistent in nature with the results published
earlier for other twist boundaries [7-9, 14].

Table 1. (001) twist boundary energies in units of mJ/m2

Type θ (deg) Copper Silver Gold
Σ = 5 36.87 998.75 710.58 726.67
Σ = 17 28.07 910.34 667.17 655.49
Σ = 13 22.62 834.37 602.14 585.31

Bristowe and Crocker [8] have used non-equilibrium semi-empirical two-body inter-
atomic potential to calculate the structure and energy of Σ = 5 (001) twist boundary in
copper. They found a volume increase of about 0.08[001]a and a boundary energy of 1210
mJ/m2. The present results for the same boundary are, 0.13[001]a and 998.75 mJ/m2,
respectively. In the present calculations a four times larger model has been used and more
sophisticated many-body potentials are employed, which have already been successful in
the simulation of several twin and twist boundaries [12-14]. The energy computed is 17.5
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% lower than that of Bristowe and Crocker [8]. For the same boundary Wolf [7] has
obtained a volume increase of 0.12[001]a, and the boundary energy of 700mJ/m2 using
EAM and LJ potentials. Also for Σ = 17 (001) and Σ = 13 (001) twist boundaries in
copper, he has obtained about 28 % lower energies than our present results. This is due
to inherent problem with both EAM and LJ potentials that both give zero (111) stacking
fault energy. Therefore the present results could be considered more reliable.

In general twist boundary energies for copper are lower than silver and that of silver are
lower than the gold. There is only one exception to be noted from the result summarized
in Table 1, i.e. Σ = 5 silver energy is lower than for the same boundary in gold. Also,
silver and gold boundary energies differ by less than 3 %.
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