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Abstract

Crystals 3-Sn are grown from ingotsof 99.99% prity by modified Bridgman
method under 10™2 torr pressure and oriented by Laue back reflection method.
The relation between crystal crosscut and dislocation density calculated using etch
hillock technique is investigated. It is found that the dislocation density increases
with increasing crystal crosscut.

1. Introduction

The first suggestion of dislocations has been provided by observations [1, 2] in the nine-
teenth century that the plastic deformation of metals proceeded the formation of slip
bands or slip packets, wherein one portion of a specimen sheared with respect to another.
Taylor, Orowan, and Polanyi [3] introduced dislocations into physics in the 1930’s. By the
late, the investigation methods of individual dislocations could be divided into four main
groups [4]. The first method, known as the surface method, is based on the formation of
etch pits or hillocks at the site where a dislocation meets the surface. One-to-one corre-
spondence between etch hillocks or pits and dislocations has been proposed by Chockley
and Read [5] in 1949 and first observed by Batterman [6] in 1957. The second method
is x-ray difraction topography. This method introduces local differences at dislocations
in the scattering of x-rays. The other method used by Hedges and Mitchell [4] is the
decoration method. Apart from these methods, the dislocations could be observed by
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means of electron microscopy in which the dislocations are studied in specimens of 0.1-1
micron thick.

In recent years, extensive studies have been conducted to understand the individual
dislocation motions and the relation between the dislocation density and the deforma-
tion characteristics. A number of investigations have been made by Hirokowa et.al. [7]
to confirm one-to-one correspondence between dislocations and etch hillocks which was
introduced by Chockley and Read [5] and Batterman [6], using the modified double etch
method. Corresponding to this, Diizgiin [8] investigated dislocation density using the
same method in [-Sn single crystals. It is generally observed that dislocation density
depends on crystal shape. Ojima and Hirokowa [9] and Diizgiin et.al. [10] showed that
the dislocation density varies with the crystal shape. The same results have been ob-
tained by Kojima et.al. [11], Tisivinky [12], Fukutomi and Takatori [13]. Experimental
observations about this matter are extremely numerous and in many cases, confusing and
contradictory.

The purpose of the present study is to investigate the relation between dislocation den-
sity and the crystal crosscut in 3 - Sn single crystals which grown by modified Bridgman
method.

2. Experimental Procedure

2.1. Preparation of Specimen

The white tin used in this study was obtained from Merck Detining Co. From which
crystals were grown by modified Bridgman method under 10™2 torr pressure using the
crystal growth apparatus set up by Diizgiin [8] as seen in Figure 2.1. The crystals are
11.34, 22.05, 30.17 mm in crosscut and 30 to 50 mm long. The crystal orientations are
found to be close to the [110] direction.

2.2. The Formation of Etch Hillocks

As determined from Diizgiin [8], the specimens were chemically polished for one hour at
room temperature by a solution which consisted of 1 part HNOs, 1 part CH3COOH and
4 parts glycerine. After this procedure, the crystals were etched for 70 s with a solution
which consisted of 100 cm? % 37 HCI, 100 gr. NH3NOs, 500 cm? distilled water and
5 x 1075 mol CuSO4.5H,0. As a result of etching we calculated the dislocation densities
by means of etch hillocks occuring in the crystal surfaces of different crystals with different
crystal crosscuts. Results are given in Table 3.1.

Table 3.1. Relation between dislocation density and crystal crosscut.

Sample | Crystal crosscut | Dislocation Density
No: S(mm?) N(cm~—2)
1 11.34 2.6 x 10°
2 22.05 4.6 x 10°
3 30.17 8.89 x 10°
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Figure 1. Crystal growth apparatus A-Vacuum pump, B-Protecting header, C-Quartz pipe,
D-Furnace, E-Liquid nitrogen, F-Power amplifier, G-Connecting cable.

2.3. Photographic Magnification

The investigations of etch hillocks produced on crystal surfaces were examined with pho-
tographic magnification. The etch hillocks were photographed with a metal microscope
having an optical arrangement [8, 14]. The observed etch hillocks patterns are given in
Figure 2.2.

3. Experimental Results

3.1. Geometry of Etch Hillocks

As seen in Figure 2.a, b and ¢, etch hillocks produced on the etched crystal surfaces {001}
have a pyramidal shape. The edges of basal squares of hillocks are in the (001) direction
and their four oblique faces are parallel to the {101} planes [7, 15].

3.2. The Relation Between Dislocation Density and Crystal Crosscut

Dislocation density is defined as the total length of dislocations per unit volume [8, 9, 10,
11, 16]. The dislocation density in well annealed crystals is usually between 10% — 10%
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em~2. Hull [4], Young and Savage [17] showed that the dislocation density in Cu single
crystals is reduced to about 102, 10® cm~2 with very careful treatment in crystals grown
by modified Bridgman method. The dislocation density in white tin single crystals has
been obtained as low as 10* cm? by Ojima and Hirokawa [9]. In the present study, the
calculated dislocation densities as a function of the crystal crosscut are shown in Table
3.1 and in Fig. 3.1. It can be seen that the dislocation density increases with increasing
crystal crosscut.

20um
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Figure 2. Etch patterns on the top face of crystals (a) sample 1, (b) sample 2, (c) sample 3.
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Figure 3. Dislocation density against crystal crosscut.
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4. Results and Discussion

Two principal mechanisms for introducing dislocations during the crystal growth have
been suggested [4]. These are formation and subsequent movement of dislocation loops
by collapse of vacancy platelets and heterogeneous nucleation of dislocations by local
internal stresses. It can be seen from Figure 3.1, dislocation density increases with in-
creasing crystal crosscut. This increase is explained by assuming that vacancies escape
to the surface in thin crystals, so the vacancies can not collapse to form dislocations.
Meanwhile, thin crystals have few subgrain boundaries. Thus a sufficient supersaturation
of vacancies to form dislocations in the subgroun boundaries is reduced and dislocation
density decreases. These results have been confirmed by Kojima et.al. [11] and Diizgiin
et.al. [10] with the results obtained in Antrasin and in Cd single crystals, respectively. In
Table 4.1, the results from various investigation are given. The results in this study are
the same as those of researchers [18, 19]. In contrast, the results are different from those
of Ojima and Hirokowa [9]. They showed that the dislocation density in triangular thin
plates of 3 — Sn single crystals decreases with increasing crystal width. This case has
been interpreted by means of the crystal growth conditions and crystal shape [20]. The
dislocation density increases by means of the adhesion force which is produced with the
interaction of crystal surfaces and crucible [9, 21]. Meanwhile, the crystals which have
corners produce internal stresses. It is expected that the internal stresses are connected
with dislocation density [7, 11, 20, 21]. In this study the grown crystals are cylindrical
shape and have no corners. The internal stresses are less than those needed for plastic
deformation. So, there was no effect on the dislocation density.

Table 4.1. The relationships between dislocation density and crystal width or crosscut in the
present study and previous investigations.

Crystal width or | Dislocation
Specimen | Crystal crosscut Density Year References
(mm? or mm) (em~2)
2.1 8.2 x 10° Ojima and
3-Sn 10.3 8.1x 10* | 1979 Hirokawa
29.6 4.0 x 103 9]
1.6 0 1.2 x 10° Kojima et.al.
Antrasin 4.0 0 2.7x 105 | 1984 [11]
7.50 4.3 x 108
2.0 1.4 x 108 Diizgiin et.al.
Cd 6.3 5.8 x 106 | 1990 [10]
8.3 7.0 x 10°
9.2 9.2 x 10°
11.34 2.6 x 10°
(-Sn 22.05 4.6 x 10° 1997 | present study
30.17 8.8 x 10°
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In conclusion, the relation between the dislocation density and crystal crosscut in
[ — Sn single crystals grown by modified Bridgaman method was investigated. We found
that the dislocation density increases with crystal crosscut.
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