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Abstract

Quantum integrable systems related with SU(1, 1) group manifold or hyperboloid
[x, x] = x2

1 + x2
2 − x2

3 − x2
4 = 1 in spherical, hyperbolic and parabolic coordinates

systems are considered. The explicit expressions for waves functions, spectra and
S-matrices are given.

1. Introduction

There exist many coordinate systems which reduce to separation of variables in Laplace-
Beltrami operators given in [1]. But only for those which are geodesics, in other words,
which relate to one parameter subgroup of symmetry group, does there exist a simple
transformation of Laplace-Beltrami operators on symmetrical spaces (SS) to some Hamil-
tonian quantum systems. Hence only the distortion of the symmetry of the free particle
motion on SS by the geodesic paths reduce to the dynamics of quantum systems.

The one dimensional integrable quantum systems related to free motions in symmetric
spaces (SS) of the non compact groups SO(1,2), U(1,2), Sp(1,2) are considered in [2, 3]. As
shown in [2, 3], the dynamics of a quantum system depend on the stabilizer (stationary)
subgroup of the fixed point of the SS and coordinate systems on SS which is chosen. For
the case of the SS with the compact stabilizer subgroup the quantum system has only
continuous spectrum; but for the SS with the non compact one-quantum systems, it has
discrete and continuous spectrum. This is because in the case of the SS with the compact
stabilizer subgroup the distance between two points on SS is real but in the SS with the
non compact case the distance has real and imaginary parts. The results of the case of
the SS with the compact stabilizer subgroup are given in [4].
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The group SU(1,1) of the matrices
[
a b
b a

]
, |a|2 − |b|2 = 1 define the single sheet

hyperboloid [x, x] = x2
1 +x2

2−x2
3−x2

4 = 1. To our knowledge, no consistent and complete
treatment for the single sheet hyperboloid exist up to now (see [5, 6]). Our solution of the
hyperboloid for the parabolic coordinate is the original. Recently, there has been path
integral treatments of the hyperboloid [6]. However, the author wrongly reported wave
function on the hyperboloid [x, x] = 1 in the parabolic coordinate (see Eq. (46) in [6]).
We shall show thatthe correct wave function for this case is expressed as Eq. (45) below.

We consider spherical, hyberbolic and parabolic (horispherical) coordinate systems on
hyperboloid. In the Section 2, for a related quantum system, we give explicit expressions
for wave functions, spectra and S-matrices.

2. Dynamics Related with SU(1,1) Group Manifold

Let us consider bispherical, hyperbolic and parabolic (horispherical) coordinates systems
on the hyperboloid [x, x] = x2

1 +x2
2−x2

3−x2
4 = 1, which define a SU(1,1) group manifold.

2.1. Bispherical Coordinate System

x = (coshα cosϕ1, coshα sinϕ1, sinhα cosϕ2, sinhα sinϕ2), (1)

where 0 ≤ α <∞, 0 ≤ ϕ1,2 ≤ 2π. From Eq. (1) follows the metric matrix

(gab) = diag(−1, cosh2 α,− sinh2 α)

and the Laplace-Beltrami operator

∆L,B =
−1
J(α)

∂

∂α
J(α)

∂

∂α
+

1
cosh2

∂2

∂ϕ2
1

− 1
sinh2

∂2

∂ϕ2
2

, (2)

where J(α) = sinhα coshα.
Free motion on the hyperboloid [x, x] = 1 is defined by the equation

∆L,BΦ(α, ϕ1, ϕ2) = −σ(σ + 2)Φ(α, ϕ1, ϕ2). (3)

After the substitution of

Φ(α, ϕ1, ϕ2) = Λ(α)eimϕ1einϕ2

into Eq.(3) we have

1
J(α)

∂

∂α
J(α)

∂Λ
∂α

+
(

m2

cosh2 α
− n2

sinh2 α

)
Λ(α) = σ(σ + 2)Λ(α), (4)

with ‖Λ(α)‖ =
∫ ∞

0

|Λ(α)|2J(α)dα.
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By the transformation

Λ(α) =
1√
J(α)

Ψ(α), (5)

Eq. (4) is reduced to the one dimensional Schrödinger equation with the potential

V (α) =
−1

4
+ n2

sinh2 α
+

1
4
−m2

cosh2 α
(6)

and energy spectrum
E = −(σ + 1)2. (7)

By the substitution
Λ(α) = tanhn α coshσ αW (α)

and the transformation z = tanh2 α, Eq. (4) is reduced to the hypergeometric equation
and for the regular solution at α = 0 we have [7, 8]:

Λ(α) = tanh|n| α coshσ αF
(
−σ + |m|+ |n|

2
,
−σ − |m|+ |n|

2
; |n|+ 1; tanh2 α

)
. (8)

It follows that the quantum system has bound and scattering states. The square
integrable normalized wave function for σ = 1 with l− |m| − |n| = 2k, k = 0, 1, 2, . . . has
the form:

ΨE(α) = c2 sinh|n|+
1
2 α cosh|m|+

1
2 αP

(|n|,|m|)
l−|m|−|n|

2

(cosh 2α), (9)

where

c2 =

√√√√√ (l+ 1)Γ
(
l−|m|+|n|+2

2

)
Γ
(
l+|m|−|n|+2

2

)
Γ2(|n|+ 1)Γ

(
l−|m|−|n|+2

2

)
Γ
(
l+|m|−|n|+2

2

)
For continuous spectrum E = ρ2 > 0, σ = −1 + iρ we calculate the S-matrix using

the analytical continuous formula 2.10 (1) for the hypergeometric function of [9]:

F (a, b; c; z) = A1F (a, b; a+ b− c+ 1; 1− z) +A2(1− z)c−a−b

F (c− a, c− b; c− a− b + 1; 1− z), | arg(1− z)| < π (10)

A1 =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c − b) , A2 =

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

. (11)

From the Eq. (10) and Eq. (8) we have the asymptotic expression

Λ(α)α→∞ = A(m, n, ρ)e(−1+iρ)α + A(m, n, ρ)e−(1+iρ)α, (12)

where

A(m, n, ρ) =
Γ(|n|+ 1)Γ(iρ)

Γ
(
iρ−|m|+|n|+1

2

)
Γ
(
iρ+|m|+|n|+1

2

) .
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Solutions of the Schrödinger equation with potential Eq. (6 satisfying the condition∫ ∞
0

ΨE(α)ΨE(α)dα = δ(ρ− ρ′) (13)

have the form:

ΨE(α) = c̃2 sinh|n|+
1
2 α coshi

√
E− 1

2 αF

(
−i
√
E + |m|+ |n|+ 1

2
,

−i
√
E − |m|+ |n|+ 1

2
; |n|+ 1; tanh2α

)
, (14)

where
|c̃2| =

1√
2π|A|

.

The S-matrix is found to be

S =
A

A
=

Γ(i
√
E)Γ

(
−i
√
E−|m|+|n|+1

2

)
Γ
(
−i
√
E+|m|+|n|+1

2

)
Γ(i
√
E)Γ

(
i
√
E−|m|+|n|+1

2

)
Γ
(
i
√
E+|m|+|n|+1

2

) . (15)

2.2. Hyperbolic Coordinate System

We have:

x = (coshα cosh β cosϕ, coshα cosh β sinϕ, coshα sinhβ, sinhα), (16)

where −∞ < α < ∞, −∞ < β < ∞, 0 ≤ ϕ ≤ 2π. From Eq. (16) follows the metric
matrix

(gab) = diag(−1,− cosh2 α, cosh2 α cosh2 β)

and the Laplace-Beltrami operator

∆(3)
L,B =

−1
J(α)

∂

∂α
J(α)

∂

∂α
+

1
cosh2 α

∆(2)
L,B, (17)

where J(α) = cosh2 α and

∆(2)
L,B =

−1
J ′(β)

∂

∂β
J ′(β)

∂

∂β
+

1
cosh2

∂2

∂ϕ2

with J ′(β) = cosh β.
Free motion on the hyperboloid is defined by the equation:

∆(3)
L,BΦ(α, β, ϕ) = −σ(σ + 2)Φ(α, β, ϕ). (18)
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SEZGİN, VERDİYEV

Setting
Φ(α, β, ϕ) = A(α)Ω(β)eimϕ

and using
∆(2)
L,BΩ(β) = −σ1(σ1 + 1)Ω(β) (19)

we have
1

J(α)
∂

∂α
J(α) +

σ1(σ1 + 1)
cosh2 α

A(α) = σ(σ + 2)A(α), (20)

with ‖A(α)‖ =
∫ ∞
−∞
|A(α)|2J(α)dα.

Using the transformation

A(α) =
1√
J(α)

Ψ(α),

Eq. (20) is reduced to the one dimensional Schrödinger equation with the potential

V (α) = −σ1(σ1 + 1)
cosh2 α

(21)

and energy spectrum
E = −(σ + 1)2. (22)

The substitution
A(α) = coshσ1 αW (α)

and the transformation z = − sinh2 α reduces Eq.(20) to the hypergeometric equation.
Regular solutions of Eq. (20) at α = 0 have the form

A1(α) = coshσ1 αF

(
σ1 − σ

2
,
σ1 + σ + 2

2
;
1
2

;− sinh2 α

)
and

A2(α) = coshσ1 α sinhαF
(
σ1 − σ + 1

2
,
σ1 + σ + 3

2
;
3
2

;− sinh2 α

)
. (23)

It follows that the quantum system with the potential of Eq.(21) has bound and
scattering states. The normalized wave function for the discrete spectrum E = −(l+ 1)2

with
σ = 1, σ1 = l1,

l− l1
2

= k,
l − l1 − 1

2
= k′, k, k′ = 0, 1, 2 . . .

have the form:

Ψ(1)
E (α) = c3 coshl1+1 α P

(− 1
2 ,l1+ 1

2 )
l−l1

2

(cosh 2α)

and
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Ψ(2)
E (α) = c̃3 coshl1+1 α sinhα P (+ 1

2 ,l1+ 1
2 )

l−l1−1
2

(cosh 2α), (24)

where

c3 =

√
(l+ 1)Γ

(
l−l1+1

2

)
Γ
(
l+l1+2

2

)
πΓ
(
l−l1+2

2

)
Γ
(
l+l1+3

2

) , c̃3 =

√
(l + 1)Γ

(
l−l1+2

2

)
Γ
(
l+l1+3

2

)
πΓ2

(
3
2

)
Γ
(
l−l1+1

2

)
Γ
(
l+l1+2

2

) .
To calculate S-matrices for the continuous spectrum

√
E = ρ, σ = −1 + iρ, 0 < ρ <

∞ we use the formula 2.10 (2) of [9]:

F (a, b; c; z) = B1(−z)a F
(
a, 1− c+ a; 1− b+ a;

1
z

)
+

B2(−z)−bF
(
b, 1− c+ b; 1− a+ b;

1
z

)
, | arg(−z)| < π, (25)

where
B1 =

Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

, B2 =
Γ(c)Γ(a − b)
Γ(a)Γ(c − b) .

From the Eq. (23) and Eq. (25) we have asymptotic expressions:

A1α→∞ = B(σ1, ρ)e(−1+iρ)α + B(σ1, ρ)e−(1+iρ)α

and
A2α→∞ = B̃(σ1, ρ)e(−1+iρ)α + B̃(σ1, ρ)e−(1+iρ)α, (26)

where

B(σ1, ρ) =
Γ
(

1
2

)
Γ(iρ)

Γ
(
iρ+σ1+1

2

)
Γ
(
iρ−σ1

2

) , B̃(σ1, ρ) =
Γ
(

3
2

)
Γ(iρ)

Γ
(
iρ+σ1+2

2

)
Γ
(
iρ−σ1+1

2

) .
Thus the wave functions ΨE(α) with the condition∫ ∞

−∞
ΨE(α)ΨE(α)dα = δ(ρ− ρ′) (27)

has the form

Ψ(1)
E (α) = c4 coshσ1+1 αF

(
−i
√
E + σ1 + 1

2
,
i
√
E + σ1 + 1

2
;
1
2

;− sinh2 α

)
and

Ψ(2)
E (α) = c̃4 coshσ1+1 α sinhαF

(
−i
√
E + σ1 + 2

2
,
i
√
E + σ1 + 2

2
;
3
2

;− sinh2 α

)
, (28)
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where
|c4| =

1
2
√
π|B| , c̃4| =

1
2
√
π|B̃|

.

The S-matrices to be found are given by

S(1) =
B

B
=

Γ(i
√
E)Γ

(
−i
√
E+σ1+1

2

)
Γ
(
−i
√
E−σ1
2

)
Γ(−i

√
E)Γ

(
i
√
E+σ1+1

2

)
Γ
(
i
√
E−σ1
2

)
and

S(2) =
B̃

B̃
=

Γ(i
√
E)Γ

(
−i
√
E+σ1+2

2

)
Γ
(
−i
√
E−σ1+1

2

)
Γ(−i

√
E)Γ

(
i
√
E+σ1+2

2

)
Γ
(
i
√
E−σ1+1

2

) . (29)

2.3. Parabolic (Horispherical) Coordinate System

We have

x =
(

cosh
t

2
− 1

2
e
t
2 q2, e

t
2 q1, e

t
2 q2, sinh

t

2
+

1
2
e
t
2 q2

)
, (30)

where q2 = q2
1 − q2

2, −∞ < t < ∞, −∞ < q1,2 < ∞. From Eq. (30) follows the metric
matrix

(gab) = diag

(
−1

4
, et,−et

)
and the Laplace-Beltrami operator

∆L,B =
−4
J(t)

∂

∂t
J(t)

∂

∂t
+

1
et

(
∂2

∂q2
1

− ∂2

∂q2
2

)
, (31)

where J(t) = et.
The free motion on the hyperboloid is defined by the equation:

∆L,BΦ(t, q1, q2) = −σ(σ + 2)Φ(t, q1, q2). (32)

By the separation of the variables,

Φ(t, q1, q2) = T (t)eivq1eiµq2

from Eq. (32) and we have:

4
d2T

dt2
+ 4

dT

dt
+

(v2 − µ2)
et

T (t) = σ(σ + 2)T (t) (33)

with ‖T (t)‖ =
∫ ∞
−∞
|T (α)|2etdt.
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By the transformation

T (t) =
1√
J(t)

Ψ(t),

Eq. (33) is reduced to the one dimensional Schrödinger equation with the potential

V (t) =
µ2 − v2

4et
(34)

and energy spectrum

E = −(σ + 1)2

4
. (35)

After the transformation z = e−
t
2 we have Bessel’s equation 7.2.1 (1) of [9]:

z2 d
2Ψ
dz2

+ z
dΨ
dz

+ ((v2 − µ2)z2 − (σ + 1)2)Ψ(z) = 0. (36)

In the case when v2− µ2 < 0 the quantum system has only scattering states with energy
E = ρ2

4 , σ = −1+ iρ, 0 < ρ <∞ and the wave functions which tend to zero for t→ −∞
are given by the Mcdonald K-function:

ΨE(t) = c5Ki
√
E(
√
µ2 − v2e−t/2), ρ =

√
E. (37)

In order to calculate the S-matrix and c5-factor we use the definition of the K-function
from Eqs. 7.2.2 (12) and (13) of [9]:

Kv(z) =
π

2 sin vπ
[I−v(z) − Iv(z)], (38)

where

Iv(z) =

(
z
2

)v
Γ(v + 1)0

F1

(
v + 1;

z2

4

)
.

It follows
Iv(z)z→0 →

zv

2vΓ(1 + v)
. (39)

Thus we have:
ΨE(t)t→∞ = Deiρt/2 +De−iρt/2, (40)

where D =
π(
√
µ2 − v2)iρ

2i sinh ρπ2iρΓ(−iρ + 1)
. Thus the wave function ΨE(t) with condition Eq.

(27) has the form

ΨE(t) =
1

2
√
π|D|Ki

√
E(
√
µ2 − v2e−t/2). (41)

The S-matrix to be found is given by

S = (
√
µ2 − v2)−2i

√
E22i

√
E Γ(i

√
E + 1)

Γ(−i
√
E + 1)

. (42)
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In the case when v2 − µ2 > 0 the quantum system has bound and scattering states. The

orthonormalized wave functions ΨE(t) for the discrete spectrum σ = `, E = −(l + 1)2

4
with l = 2n, n = 0, 1, 2, . . . has the form

ΨE(t) = c̃5 Jl+1(
√
v2 − µ2e−t/2), (43)

where c̃5 =
√

2(l+ 1). Here, we used the orthogonality condition for the Bessel function
7.14 (32) of [9]:∫ ∞

0

x−1Jv+2n+1(x)Jv+2m+1(x)dx =
{

0, m 6= n
(4n + 2v + 2)−1, m = n, v > −1. (44)

The wave function ΨE(t) for the continuous spectrum E = ρ2

4 are given by the analytical
continuation from Eq. (37):

ΨE(t) =
π

4i
√
π sinh

√
Eπ|D|

[
J−i
√
E(
√
v2 − µ2e−t/2)− Ji√E(

√
v2 − µ2e−t/2)

]
. (45)

Finally, we give the result

ΨE(t) =
[
Ji
√
E(
√
v2 − µ2e−t/2) + J−i

√
E(
√
v2 − µ2e−t/2)

]
(46)

from [6] (formulae 8.2, where
√
E ≡ p, t ≡ 2ρ, |k| ≡

√
v2 − µ2, v2 − µ2 > 0). This

solution defined for v2− µ2 > 0 is not continuously related with solution (37) defined for
v2 − µ2 < 0, hence it is not correct.
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