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Abstract
The differential cross sections for elastic scattering of 16O from 20Ne have

been calculated using an optical potential and distorted wave Born approximation
(DWBA) calculations. In the present calculations several prescriptions were tried
in the ion-ion potential. The DWBA calculations were performed employing folded
real and Woods-Saxon optical potentials for the distorted waves. Inclusion of the
exchange process explains the large back-angle cross sections. The elastic scattering
differential cross sections are successfully described by calculations in which elastic
alpha-transfer amplitudes are coherently added to direct elastic scattering ampli-
tudes.

1. Introduction

Heavy ion elastic scattering data have been studied successfully in terms of a double-
folding potential [1, 2]. The use of folded optical potentials for the distorted waves
has been introduced in an analysis of single-nucleon transfer reaction [3]. The elastic
scattering angular distributions [4] have been analyzed over the large angular range using
woods-Saxon potential. The contribution of parity-dependent real potential was found
in the analysis of heavy ion elastic scattering data [5]. The differential cross sections for
elastic scattering of 28Si from 27Al have been analyzed in terms of the optical Potential
with a Woods-Saxon form factor and the phase shift model [6]. Several description have
been developed to describe the gross structures observed in 16O+ 20Ne elastic scattering
[7-9].

In the present work, a microscopic 16O + 20Ne interaction potential has been con-
structed in a double-folding model with M3Y interaction and a single-nucleon exchange
term. The elastic transfer process was calculated as an alpha-particle transfer in the
DWBA calculations. Section 2 describes the reaction amplitude. Numerical calculations
and results are given in Section 3. Section 4 contains the discussion and conclusion.
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2. Reaction Amplitude

In an attempt to find a more consistent analysis of the data in the whole angular
range, the elastic transfer amplitude was calculated as an α-cluster transfer in the exact
finite-range DWBA calculations.

In the present section, we used the explicit transfer amplitude which has been intro-
duced in previous calculations [10],

Ttr(MA, π − θ) = S(2Ja + 1)1/2
∑
`

(2`+ 1)1/2〈JAMA|JAMA〉F`m(π − θ), (1)

where JA and MA are the spin and spin component of target nucleus A;S is the specteo-
scopic factor for the α − 16O substructure of 20Ne; and ` is the orbital momentum
transferred in the A(a, A)a reaction. In the present calculations, the from factor F`m has
been calculated following the analysis of heavy ion transfer reactions [11]. The calculated
α-elastic transfer amplitude was added coherently to the direct amplitude Tel describing
the A(a, a)A scattering process. Dealing with the coherent sum of the two channel com-
ponents, the transition amplitude for the spin-zero colliding particles can be expressed
as

Tsys(θ) = Tel(θ) + Ttr(π − θ). (2)

The direct elastic amplitude have been calculated using an optical model. Where in
the absence of any spin-orbit interaction it is independent of spin component and behaves
as a term with transferred angular momentum ` = 0.

3. Numerical Calculations and Results

In the present calculations, different interpretations are introduced to explain the
elastic scattering data. Initially, the data have been analyzed using the standard six-
parameter Woods-Saxon potentials. The starting parameters were varied to give the best
fit to the 24.5 MeV data. The resulting parameters are given in Table 1. In addition,
an optical model using real and imaginary double-folding potentials [12] was employed.
In this analysis, the effective nucleon-nucleon interaction is taken to be the S = T = 0
components of the M3Y interaction [13]. In the present calculations the folding potential
was carried out using the DFPOT [14] version of computer program. Where a har-
monic oscillator distribution and a two-parameter Fermi density were used to construct
the density distributions of 16O and 20Ne nuclei, respectively. Listed in Table 2 are
the parameters of these distributions which are obtained from electron scattering mea-
surements [15], assuming that the proton and neutron densities to be identical. In these
calculations, there are a fewer adjustable parameters because the densities of the nuclei
considered are obtained independently. The real NR- and imaginary N1-normalization
factors were varied until the best fit to the data was obtained. The results are given in
Table 3 and the fits shown as a dotted line in Figure 2. It is seen that the normalization
coefficient of the real part is larger than unity and larger than the coefficient of the imag-
inary part. In fact, using the same folded form for both real and imaginary (DF + DF )
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potentials does not fit the data. Therefore, the conventional Woods-Saxon shape was
used for the imaginary part of the optical potential together with the usual Coulomb
potential. In this analysis the folded potential was multiplied by a normalization factor
N to compensate for deficiencies in the model. Initially, the normalization factor was
fixed at N = 1.0 and the imaginary potential parameters were extensively searched upon
to fit the data. In a second set of calculations, searches were done on the imaginary
parameters over a gird of N values in steps of 0.1. The parameters obtained are listed in
Table 3 and the fits shown in Figs. 1 and 2 as a dashed lines. It is apparent that the fits
to the 32.1 MeV data are good over the entire angular range and provide a much better
description of the data than that using (DF + DF ) potentials. In order to describe the
experimental data in the whole angular range, the differential cross sections have been
evaluated using the DWBA calculations. The numerical calculations have been carried
out using the SATURN-MARS versions of computer program [16]. In the present cal-
culations, the binding potentials is taken as a Woods-Saxon potential with parameters
r0 = 1.25fm and a0 = 0.65fm. The strength was adjusted to give the single particle
separation energies and the number of nodes for the wave function were calculated using
the harmonic oscillator relation. In general, the data have been described qualitatively
in terms of the interference of elastic α-transfer amplitudes with the elastic scattering
amplitudes as shown in Figures 1 and 2 as a solid lines.

Table 1. Optical model potentials for the 16O + 20Ne elastic scattering

E V0 rv av W0 rw aw
(MeV ) Set (MeV ) (fm) (fm) (MeV ) (fm) (fm)

24.5 I 10.0 1.48 0.45 23.0 1.32 0.35
32.1 II 25.0 1.42 0.51 9.6 1.25 0.29

III 44.0 1.34 0.59 15.0 1.19 0.35

Vopt = Vc − V0f(XV )−Wf(XW ); f(Xi) =
{

1 + exp
(
r −Ri
ai

)}−1

RX = rX(A1/3
1 +A

1/3
2 ); x = v, w and c.

Table 2. Charge density parameters

Nucleus ρo a c α0

(fm−3) (fm) (fm)
16O 0.07256 1.818 1.529
20Ne 0.07675 0.571 2.805

ρc(r) = ρ0 [1 + α0(r/a)2] exp[−(r/a)2] for 16O.

= ρ0 [1 + exp[(r − c)/a]−1 for 20Ne.
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Figure 1. The differential cross sections for the 20Ne( 16O, 20Ne) 16O(g.s.) reactions. The

solid curve is the coherent sum of direct elastic-and elastic transfer-components. The dashed

line is the result of DF+WS optical model calculations. The dotted line is the DF+DF analysis.

The experimental data are from reference [7].
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Figure 2. As in Fig. 1. The experimental data are from reference [7].
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4. Discussion and Conclusion

In the present work, the 16O+ 20Ne elastic scattering data were analyzed in terms of
different optical models. The present calculations show that the backward oscillations for
the 32.1 MeV elastic scattering data can’t be described in terms of the folding-model. In
fact, the folding potential provides reasonably good fits to the experimental data as well
as the Woods-Saxon potential. The most obvious difference between the double folding
predictions and the phenomenological fits are in the cross sections at the backangles. The
DF calculations fit the data fairly well and then fall off precipitously, whereas the optical
potential calculations show a rising backangle cross sections. Also, the results obtained
with using a semimicroscopic analysis are in good agreement with the experimental data
as shown in Figs. 1 and 2 by dashed lines. It is found that different normalization factors
together with different families of discrete ambiguous potentials introduce good fits to the
data and give qualitatively similar results as those obtained in the previous calculations
[7] using an extended optical model.

Table 3. Best fit parameters of folding model

System E NR NI N W0 rw aw
(MeV ) (MeV ) (fm) (fm)

16O + 20Ne 24.5 1.0 16.0 1.49 0.31
1.23 0.73

0.79 16.0 1.41 0.28
32.1 1.0 7.6 1.35 0.27

1.39 0.69
0.74 23.0 1.13 0.39

In addition, it is seen that calculations using a coherent sum of the direct elastic
amplitudes and elastic transfer amplitudes introduce the best fits to the elastic data in
the complete angular range as shown in Figs. 1 and 2 as a solid lines. Where the present
calculations provide a substantially better description of the elastic scattering angular
distribution data than the coupled-channel calculations [9] using both a parity-dependent
real interaction and an angular momentum-dependent absorbtive term. Therefore, the
inclusion of the exchange process in the reaction amplitude well reproduces the phase
and amplitude of the backward oscillations as well as the absolute value of the cross
sections. It should be noted that although the one-step transfer process was responsible
for the large angle cross sections, but it is insufficient to explain the 16O+ 20Ne data in
whole angular range. Moreover, the present analysis using the coherent sum of the two
reaction amplitudes represent a significant improvement over the previous optical model
calculations.
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