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Abstract

Classical set theory is nonextensive since the mathematical definition of a set
excludes the possibility that more than one copy of the same element can be in
a set. We show that the description of random sets in terms of an algebra of
creation operators and their hermitean conjugates yields an interpretation of the
unitary quantum group SUq(d) as the symmetry associated with the construction
of d random sets from a given source set of M = (1− q)−1 elements.

Standard statistical mechanics is extensive due to the large number of particles or
subsystems in the system. Thus when two systems are joined, extensive statistical prop-
erties such as energy, volume, entropy are added. As an example consider a gas in volume
V consisting of N particles and imagine dividing this system into two volumes of V/2
. Then volume V/2 approximately contains N/2 particles. Since the fluctuation of this
number is given by

√
N/2 , as a measure of nonextensivity of the system we obtain

nonextensivity ≈
√
N/2
N/2

∼ 1√
N

. (1)

For N ≈ 1020 , N−1/2 ≈ 10−10 ≈ 0 and for all practical purposes the system is extensive.

Another source of nonextensivity is due to the Heisenberg uncertainity principle of
quantum mechanics. Consider a free particle in a cube of volume V = L3. Since the
uncertainity in the position of the particle is

∆x < L , (2)

the Heisenberg uncertainity principle

∆p ∆x ≈ h̄ (3)

says that the minimum uncertainity ∆p in the momentum of the particle is
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∆p ≈ h̄

L
. (4)

This gives rise to an uncertainty ∆E in the energy of the particle by

E =
p2

2m

∆E =
p ∆p
m

. (5)

For N particles we have

EN = N
p2

2m

∆EN =
√
N ∆E =

√
N

p ∆p
m

. (6)

As a measure of nonextensivity in energy we can take

nonextensivity ≈ ∆EN
EN

=
1√
N

∆p
p

. (7)

As T → 0 the minimum momentum a particle can have is ∆p . This gives

nonextensivity
T→ 0−→ 1√

N
. (8)

On the other hand at high temperatures E = kT/2 and we have

nonextensivity ≈ 1√
N

h̄

L

1√
2mE

=
1√
N

h̄

L
√
mkT

. (9)

Thus the nonextensivity is again inversely proportional to the square root of the number
of particles.

Admittedly these considerations are rather crude and apparently do not yield a precise
mathematical formulation of nonextensivity. The question is whether one can find or
define a simple system which is nonextensive and which will yield a mathematically
precise definition of this concept. A natural candidate for such a system is classical set
theory with the nonextensive property of number of elements in a set. Let A , B denote
sets and m(A) denote the number of elements in set A . Then

m(A ∪B) = m(A) +m(B) −m(A ∩B) . (10)

Thus if the intersection A ∩ B of A and B is not empty the number of elements in a
set is nonextensive in the sense that when A and B are joined the number of elements
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do not add up. However this property is still too complicated since the nonextensivity
depends on the detail which elements are common to both A and B . We can get rid of
this dependence on the specific elements in A and B by defining random sets with the
following properties :

1 . A and B are random subsets of a source set S of M elements.

2. The only relevant property of A or B is the average number of elements in the set.

These definitions endow the M elements of the set S with two properties which we name
the fermionic and the bosonic. A set can only have one copy of the same element. This
is the fermionic property. On the other hand only the number of elements in S , A or B
is relevant, thus in this sense all elements are identical. This is the bosonic property.

Using standard rules of probability and denoting probabilities by the letter P, for any
random subset X of S and for any element x of S we have

P (x ε X) =
mX

M
(11)

where mX is the (average) number of elements in X. If A and B are independent random
sets we have

P (x ε A ∩B) = P (x ε A).P (x ε B) (12)

which yields

mA∩B
M

=
mA

M
.
mB

M
. (13)

Thus for random sets mA∩B does not depend on the details of the sets A and B but only
on the (average) number of elements they contain. Combining (10) and (13) we obtain
an operation which we will denote by ∗ . The star operation defined by

mA∪B = mA ∗mB (14)

satisfies

mA ∗mB = mA +mB −
1
M

mA.mB . (15)

Thus for random sets (10) yields (15) . The ∗ operation defined by (15) for all real num-
bers mA , mB is commutative and associative. For M =∞ it becomes ordinary addition.
When random sets are joined their number of elements are “starred”. Equation (15) with
M replaced by (1− q)−1 is well known in Tsallis generalized thermodynamics [1] where
it is the law of “addition” of entropy. The origin of nonextensivity can be traced to [2]
the distribution of the free energy over the lattice sites in a system with exact discrete
dilatation symmetry.
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The simplest nonempty random set contains one element. We can build other random
sets by joining such random sets one by one. Denoting the empty random set thus built
in n steps by An we have

mA1 = 1

mA2 = mA1 ∗mA1 = 1 ∗ 1 = 1 + 1− 1
M

= 1 + q

mA3 = mA2 ∗mA1 = 1 ∗ 1 ∗ 1 = 1 + q + q2

mAn =
1− qn
1− q ≡ [n] , q = 1− 1

M
. (16)

Thus the average number of elements in random set An built in n steps from the source
set S is given by the Jackson [3] basic number [n] . The exact probability distribution
describing the probability that An has m elements can be calculated [4]. It is given by

P (M)
nm = Snm

M !
(M −m)!Mn

(17)

where Sn,m are Stirling numbers of the second kind satisfying the recurrence relation

Sn+1,m = mSnm + Sn,m−1 (18)

with the initial conditions S00 = 1 , S10 = 0 and S11 = 1 . The mAn in (16) is the mean
of the random variable m̂ .

mAn = µ(m̂) =
n∑

m=0

mP (M)
nm = [n] . (19)

In standard quantum mechanics the random set An can be described by a density
matrix entailing the probabilities Pnm . In this approach the pure states are the (nonran-
dom) bosonic set of m elements described by the vectors | m > in a Fock space created
from the vacuum which corresponds to the empty set.

m̂ | m > = m | m >

a∗ | m > = αm | m+ 1 >
< m′ | m > = δm′m

m̂ = a∗a (20)

where m̂ is the number operator and a∗ is the creation operator. These relations yield
the bosonic commutation relation

aa∗ − a∗a = 1 . (21)
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The mixed state An is described by the density matrix

ρ(n) =
n∑

m=0

| m > Pnm < m | , (22)

and the average number of elements in An is calculated by

mAn = tr(m̂ρ(n)) =
1− qn
1− q . (23)

The density matrix formalism is the incorporation of standard probability theory in an
algebra of operators on a Hilbert space of states and thus will not yield any “physics”
beyond what can be obtained by just probability theory alone.

It can be argued that the pure states of the Hilbert space describing random sets
should be directly associated with the random sets An rather than the sets of definite
number of elements. Thus we postulate that corresponding to the random sets An there
exists a complete set of pure states which we denote by | n > and there exists an average
number operator µ whose eigenvalues for the states | n > are [n] . Thus (20) are replaced
by

µ | n > =
1− qn
1− q | n > (24)

a∗ | n > = αn | n+ 1 > (25)
< n | n′ > = δnn′ (26)

µ = a∗a . (27)

Taking the hermitian conjugate of (25) and replacing n by n′ − 1 yields

< n′ − 1 | a = ᾱn′−1 < n′ | (28)
< n′ − 1 | a | n > = ᾱn′−1 δn′n = ᾱn−1 < n′ − 1 | n− 1 >

for all n and n′ . Hence

a | n > = ᾱn−1 | n− 1 > (29)

a∗a | n > = | αn−1 |2 | n > (30)

which by (24) and (27) yield

| αn−1 |2 =
1− qn
1− q . (31)
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Equations (25), (29) and (31) now completely determine the algebra satisfied by the
operators a and a∗ by

(aa∗ − q a∗a) | n > = (| αn |2 − q | αn−1 |2) | n > = | n > . (32)

Thus

aa∗ − q a∗a = 1 . (33)

This is the q-oscillator [5] which has gained importance in recent years following the dis-
covery of quantum groups [6].

To exhibit the relevance of quantum groups for random sets, let us consider d indepen-
dent random sets A(1), A(2), · · ·A(d) built from the same source set S of M = (1 − q)−1

elements. The respective creation operators for these random sets will be denoted by
a∗1 , a

∗
2, · · ·a∗d . They will satisfy the d-dimensional q-oscillator algebra

akak
∗ − q ak∗ak = 1

[ ak, al ] = 0 (34)
[ ak, al∗] = 0 k 6= l .

The average number of elements in random set A(k) will be given by the eigenvalues of
the operator

µk = a∗kak . (35)

Now consider the random set A which the union of the d random sets A(k) , k = 1, 2, · · ·d
.

A = A(1) ∪A(2) ∪ · · · ∪A(d) (36)

and denote the average number operator of A by µ . Due to the nonextensivity of random
sets, µ will not be given by the sum of µk . Instead it is given by the formula

µ = µ1 + qn̂1µ2 + qn̂1+n̂2µ3 + · · ·+ qn̂1+n̂2+···+n̂d−1µd (37)

where
qn̂k = 1− (1− q)µk . (38)

This expression is not unique due to the d ! ways of labelling the d random sets A(k) .
The possibility of these different labelings can be taken to correspond to in which order
the union (36) is taken. Thus the first random set taken is denoted by A(1) and the
average number of elements in it is given by µ1 . When A(2) is joined to A(1) , due to
nonextensivity, µ2 has to be multiplied by qn1 and so forth. (37) can be put in a simple
form by defining new creation operators by
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c∗1 = a∗1
c∗2 = qn̂1/2a∗2
c∗3 = q(n̂1+n̂2)/2a∗3 (39)
...
c∗d = q(n̂1+n̂2+···+n̂d−1)/2a∗d .

Then (37) becomes

µ = c∗1c1 + c∗2c2 + · · ·+ c∗dcd , (40)

and the algebra (34) is replaced by

c1c
∗
1 − q c∗1c1 = 1

ckck
∗ − q ck∗ck = [ ck−1, c

∗
k−1 ] , k = 2, · · · , d

ckcl = q1/2clck , l > k (41)
ckc
∗
l = q1/2c∗l ck , l 6= k .

These equations define the quantum covariant q-oscillators which were first derived
[7] using the unitary quantum group SUq(d) [8] which acts on the ck by

ck → αkl cl . (42)

αkl , the elements of a d x d matrix belonging to SUq(d) satisfy nontrivial commutation
relations among themselves but commute with the ck . Under such a transformation
(40) and (41) remain invariant. The parameter q of this talk is usually referred to as q2

in most of the literature on quantum groups. Thus the unitary quantum group is the
“symmetry group” of the algebra of creation operators of random sets.
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