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Abstract

Effect of subtitutional impurities on electron localization in two dimensional (2D)
lattice near the middle of the band is studied. Calculation of density of the electronic
states, ρ(ε), increases logaritmically in the middle of the band. This singularity in
the density of states of noninteracting electron gas on lattice gives rise to anomalous
dependencies of thermodynamic quantities on the temperature.

The quantum correction to the conductivity of a nonintreracting electron gas
due to Umklapp electron–impurity scattering is calculated. This correction to the
conductivity is shown to compete with that from the localization corrrection for a
Normal scattering process. As a result the conductivity has a finite value at the
middle of the band. With a small offset from the middle of the band all states again
become localized.

Introduction

The great advance has been made in the theory of disordered metals after the pioneer
work of Abrahams et al [1]. According to this paper all electron states in one and
two dimensional (1D and 2D) disordered systems are localized irrespective of degree of
randomness,and there exists no minimum metallic conductivity in three-dimensional ( 3D)
disordered systems. As regards to 1D systems, the properties of 1D electron gas, moving
in the potential of randomly distributed impurities, have been studied by means of the
exact solvable diagrammatic method [2] which confirm the Mott’s statement [3]that all
states are localized due to repeated backscattering with localization length ξloc ' l−,where
l− is the backscattering mean free path.

Relatively explicit calculation for a 2D disordered electronic system can be carried
out in the weakly disordered limit,when the criterion of smallness of the electronic wave-
length λ compared to the mean free path l is satisfied λ�l. Effect of randomness on the
conductivity of a 2D noninteracting electron gas in the weakly disordered limit has been
investigated from a first principle by Gor’kov et al. [4] Calculation of the conductivity, σ,
according to the Kubo formula shows the existence of significant quantum corrections to

165



NAKHMEDOV, KAYA

the Drude’s expression. These corrections nontrivially depend on temperature,external
fields and sample size and σ is shown to decrease with temperature or with increasing the
sample size [4,5]. Another aspect in the theory of disordered metals is electron-electron
interactions [6,7].The study of correlation effects in the framework of Fermi-liquid theory
gives rise to finite renormalization of the thermodynamic parameters of the system. In
contrast to the Fermi-liquid theory, treating electron-electron interaction in a disordered
metal by means of perturbation theory [8,9] results in nontrivial corrections to the con-
ductivity, which are similar to the localization corrections obtained for noninterecting
electron gas. The existence of electron correlations in disordered systems also gives rise
to singularity of the density of electronic states and termodynamics quantities near the
Fermi level.

Studies of the correlation effects drastically change the classical understanding of
the theory of disordered metals. Indeed, according to Matthiessen’s rule, if there exist
several mechanisms of collision in the system with the relaxation times τi , then the total
relaxation time is given by 1

τ =
∑ 1

τ i
, making the resistivities additive, i.e. there is no

interference between the different relaxation mechanisms. However, the results, obtained
in [8,9] show that the Matthiessen’s rule is failed for a disordered correlated system at
low temperatures.

Disordered metal in all above mentioned papers is modeled as a free electron gas mov-
ing in the random field of rigid impurities. However, at low concentrations of impurities
the crystal usually has a periodical structure and impurity atoms in most of the case
substitute the host atoms of the lattice. In this case the effects of commensurability of
the electron wavelength, λ, and the lattice constant a become essential in the scattering
processes. The role of the commensurability seems to be important for a half-filled band.
The commensurability effect for 1D disordered crystal near the middle of the band have
been studied by many authors near the middle of the band[10− 15]. Here we shall study
the effects of periodicity on the density of states and the conductivity of 2D disordered
crystals.

The simplest electron spectrum for a 2D square lattice can be written in the tight-
binding approximation as,

ε(−→k ) = t[2− cos(kx a) − cos(kya)]; kx ,y = 2π
aNx,y

nx ,y;−Nx,y

2
≤ nx ,y ≤ Nx,y

2 (1)

where only electron tunneling between the nearest-neighboring sites with the tunneling
integral t is involved. The bandwidth is w=4t. Since we shall study the half-filled
band case the Fermi energy has εF =2t. The Fermi surface for an infinite 2D lattice
is changed with band-filling which is shown in Fig.1 (see, [ 16,17]). As it is shown
from Fig.1, the Fermi surface corresponding to the half-filling is flatness and the relation
ε(−→k )−εF = −t[cos(kxa+ cos(kya)] is satisfied. In this case , there exists a reciprocal
lattice vector −→P 0 = (±πa ,

π
a ) that maps an entire section of the Fermi surface onto another,

i.e. the Fermi surface is perfectly ”nested” for the half-filled band case. The nesting means
that all electrons might excite from one side of the Fermi surface to the other with a single
wave-vector −→P 0 and very little energy required. The reciprocal lattice vector −→P 0 connects
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opposite sides of the Fermi surface, having parallel tangents of all connected points on the
Fermi surface. There exists the following inversion symmetry of the electron dispersion
with respect to the vector −→P 0 = (±πa ,

π
a ) for a half-filled electronic band.

Figure 1.

ε(−→p + −→p 0)− εF = −[ε(−→p )− εF ] (2)

Writing Eq (2) as ε(−→p + 1
2

−→
P 0) − εF = −[ε(−→p − 1

2

−→
P 0)− εF ] it can be seen that the

inversion symmetry (2) is essentially a particle-hole symmetry through the point
−→
P 0
2 =

(± π
2a ,

π
2a).
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2. Density of electronic states

The one-particle density of states (DOS) of the regular lattice has been studied
from the topological point of view[16] . Expressing the DOS of the regular lattice as
ρ◦ = 2

(2πh)d

∫
dS

|∇ε(
−→
k )|k

where dS is the element of isoenergetical surface in D dimen-

sional space,it can be shown that ρ◦(ε) should have a singularity at that points where the
group velocity of the electron wave packet V−→

k
vanishes. Such singularities are known as

van-Hove singularity[16] . For a 3D lattice ρ(ε) has integrable singularities, and for a 2D
square lattice with the nearest-neighbor hopping[16, 17],

ρ(ε) ∼ ln(
|ε− 2t|

2t
) (3)

The important role of the commensurability in 1Ddisordered systems for a half-filled
band was first pointed out by Dyson[10]. He has shown that the density of the phonon
states of a1D disordered chain has a singularity as ρ(ε) ∼ |ε|−1 ln−3 |ε| near the middle
of the band. Later an analogous singularity has been found in the electronic density of
states of many 1D models[10− 15] . The one electron density of states can be calculated
according to the following expression:

ρ(ε) = − 2
π

Im
∫

d2 p
(2π)2

GR(−→p , ε) (4)

where, GR(−→p , ε) is the retarded Green’s function. The DOS of a noninteractin electron
gas moving in the random field of impurities has no essential singularities near the Fermi
level. Inclusion of even short-range electron electron interactions in the 2d disordered
metal gives rise to decreasing of DOS near the Fermi level as[6, 8, 9]:

ρ(ε) =


ρ2d
◦ + λν

(2π)2D(2) ln |ε|τh̄ for 2D

ρ3d
◦ + λν

4
√

2π2

√
|ε|

(h̄D(3))
3
2

for 3D

ρ1d
◦ − λν

2
√

2π
1

(h̄|ε|D(1))
1
2

for 1D

(5)

where, λν is short-range interaction parameter and λν=U(−→q = 0); D(d) is the diffusion co-
efficient of D-dimensional electron gas and D(d) = V 2

F
τ
d ; (d=1,2,3) and τ is the relaxation

time for electron-impurity collisions.
The DOS of a 2D disordered crystal with substitutional impurities turns out to have

a singularity near the middle of the band even for the noninteracting electrons,[18] .In
the processes of electron-impurity collisions, the electron can be scattered from the first
Brillouin zone into the second zone. There exists strong Bragg reflection of a scattered
electron wave in the half-filled band. Interference between the incident and reflected
electronic waves results in singularity of DOS in the vicinity of the Fermi level..

The effect of randomness on the DOS can be studied in the weak localization limit
when the condition kF l � 1 (or εF τ � h̄) is satisfied. The new class of diagrams which
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gives an essential contribution to the DOS is drawn in Fig.2a. A thin solid and dashed
lines in Fig.2a correspond to the bare retarded Green’s functions G◦R(−→p , ε) and G◦R(−−→p +
−→p ◦, ε) for electrons the momentum of which lie in the first and second Brillouin zones
correspondingly. The expression for G◦R(−→p , ε) is obtained from the following formula for
bare Green’s function by setting ε > 0 :

G
(◦)
R (−→p , ε) = [ε− (ε(−→p ) − εF ) +

isignε

2τN
]−1 (6)

p,ε p,ε-p+κ+p0, ε a)

c)

b)

Cu(κ,ε)    ≡

Figure 2.

The electron-hole symmetry relation given by Eq(2) can be used in the expression of
G◦R(−−→p + −→p◦, ε) to reduced it into the first Brillouin zone. The random potential has a
δ-correlated Gaussian character and it is denoted in the diagrams by a dotted line with
cross. It should be noticed that the scattering processes in the problem is described by two
relaxation times τN=τ, and τu, which characterize Normal (τN ) and Umklapp-scattering
(τu) processes (Fig.3).We adopt τN and τu to be equal, τ = τN = τu.,

ρ(ε) = − 2
π

∫
d2p

(2π)2
Im
{
G◦R(−→p , ε))2

∑
(−→p , ε)

}
(7)

where
∑

(−→p , ε) is the self-energy part.
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Figure 3.

Redrawing the new diagrams, given in Fig.2a as ladder type diagrams (Fig 2b), the
self energy part

∑
(−→p , ε) can be expressed by the correlation function Cu(−→k , ε) in the

particle particle channel (or ”Cooperon”).∑
(ε,−→p ) =

∫
d2k

(2π)2
Cu(−→p , ε)GR(−−→p + −→k + −→P ◦, ε) (8)

The diagram series for Cu
−→
(k, ε) is shown in Fig.2c. Summing up the series in Fig.2c in

the limit of small ε and k (ετ � 1 and kl � 1) yields a diffusion pole for Cu(−→k , ε) :

Cu(−→k , ε) =
1

2πρ◦τ
1

[−4iετ + (kl)2]
(9)

Substituting Eq. (7) and (8) into (6) we obtain the following expression for the correction
to the DOS

δρ2d(ε) =
1

4π2D(2)
ln(

h̄

4τ |ε| ) (10)

It should be noticed that the correction is valid only for the half-filling and DOS
increases logarithmically in the vicinity of the Fermi level (Fig.4). A small offset from
the middle of the band gives rise to disappearance of the correction δρ2d(ε). Although
the functional dependence of the disorder induced singularity in δρ2d(ε) is similar to that
for the van Hove singularity, the correction (9) should vanish with τ →∞.
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Figure 4.

Calculation of the quantum corrections to the DOS of 1D and 3D weakly disordered
crystals by summing the diagrams in Fig.2a in one- and three- dimensions gives:

δρ =


1

4π
1

(h̄D(1)|ε|)
1
2

for1D

−
√
|ε|

4π2(h̄D(3))
3
2

for3D
(11)

The problem for a 1D weakly disordered crystal has been studied in[11] by using the
Berezinskii diagrammatic technique which gives an exact result. The obtained correction
in[11] has a form

δρ(1d)(ε) ∼ 1
|ε| ln3 |ε|

(12)

which differs from that obtained by us in the framework of the diffusion approximation.
Indeed, as it is well known the diffusion approximation can not be applicable to the 1D
problems, since the interference effects in 1D disordered systems are strong.
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It is obvious that electron-electron correlation should also give an additional correction
to the DOS. Such corrections for a correlated electron gas, moving in the field of ran-
dom potential,decrease the DOS near the Fermi level. The problem of electron-electron
correlation in the weakly disordered crystals is under investigation

Conductivity

The conductivity averaged over the random field of impurities is calculated at T=0
according to the following formula[19]

σαβ(ω) = i
ne2

m
ωδαβ +

2e2

ω

∫
d2P

(2π)2

∫
d2p′

(2π)2

∫
dε

2π
vαvβ〈G(−→p ,

−→
p′ ; ε+ ω)G(

−→
p′ ,−→p ;ω)〉

(13)
where, n and v are the electron concentration and velocity,the bracket 〈.....〉 denotes av-
eraging over the impurity distrubution. The diagram series for the conductivity is shown
in Fig.5. The new diagram series are appeared (see Fig.5c-5g),due to the existence of per-
fect nesting in the half-filled band[20]. The diagrams 5a and 5b characterize the Normal
scattering processes. As it is well known Drude’s expression for σ(ω) is determined by the
diagram in Fig.5a, calculation of which cancels the imaginary part of the conductivity in
the Kubo formula (12) and result in σ◦ = ne2τ

m
1

1−iωτ . The maximally crossed diagrams
in Fig.5b are responsible for the electron localization in the system,[4]. The localization
correction to the conductivity can be obtained by redrawing the ”fan” diagrams as ladder
type diagrams in the particle-particle channel and by summation of these series,[4]:

δσloc(ω) = − e2

2π2h̄
ln(− 1

2iωτ
) (14)

Notice that for a nonzero temperature (T6= 0) and small values of external frequency,
such that ω < 1

τin(T ) where τin(T) is the inalestic relaxation time, -iω in eq[13] should be
replaced by 1

τin(T )
.

Effect of periodicity gives rise to appearance new class of diagrams given in Fig.5c-
5g. In the process of electron scattering on the random impurities, the electron can be
found in the second Brillouin zone due to the Umklapp process. There exists strong
Bragg reflection of electronic waves for a half-filled band. The diagrams in Fig 5c-5g
represent the interference of multiple backward scattered and reflected electronic wave.
The quantum correction to σ(ω) from the diagram series in Fig.5c turns out to be negative:

δσν(ω) = − e2

4π2h̄
ln(− 1

2iωτ
) (15)

The diagram series in Fig.5d have a destructive effect on the localization and summation
of these diagrams gives:

δσν(ω) =
e2

4π2h̄
ln(− 1

2iωτ
) + i

e2

4π2ωτ
(16)
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+ +…≡ Cu

e)
f) g)

d)

C ( q, ω)

Figure 5.

However there exists the compensating diagram given in Fig.5c-5g. These diagrams
similar to that in Fig.5b-5d correspondingly with one additional U-scattering. These dia-
grams give exactly the same contributions to σ(ω) as Eq.(13)-(15) but with opposite signs,
i.e. the only last U-scattering is sufficient to destroy the localization effects. However, in
this process electron does not lose its memory and, therefor,the localization contributions
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are exactly cancelled. As a result,the residual expression for σ(ω) is obtained as

σ(ω) = σ◦ + i
e2

2π2ωτ
(17)

It should be noticed that a small offset from the middle of the band gives rise to dis-
appearance of contributions from the diagrams in Fig.5c-5g and the conductivity should
decreases.

Conclusion

In this paper the effects of periodicity on the DOS and the conductivity are studied
for a 2D weakly disordered crystal with half-filled band.

For small values of the band filling the effective mass approximation can be applied,as
a result of which the problem is reduced the motion of free electron gas in the field of
randomly distributed impurities. In this limiting case the DOS has not a singularity.
The existence of electron-electron interaction in the weakly disordered system gives rise
to logarithmically decrease of DOS near the Fermi level. Notice that the correlation
problem for the strongly disordered systems has been exactly solved. The inclusion of
long-range Coulomb repulsion in the strongly disordered systems results in vanishing of
the DOS at the Fermi level, which is called the Coulomb gab[21].

We have shown that the DOS of a 2D weakly disordered crystal should increases
logaritmically with approaching the middle of the band, (see, Eqs (9)-(10)). Notice
that such enhancement of DOS in the 2D disordered square lattice should exist at all
”rational” point of the electron band, when the electron energy ε satisfy the condition:
Px,y(ε) = mπ

na
, ..m=±1,±2,±3, .......,±n; (n=2,3.....). However the maximum effect take

place in the case of the minimum value of n, i.e. n=2, corresponding to the half-filling.
The behavior of the system with small band filling is defined by the localization

effects, valid for the motion of free electron gas in the random potential of impurities. For
low temperatures, satisfying the condition KBT� h

τ
, the conductivity of 2D disordered

crystal should decreases logarithmically with temperature. However, with approaching
the middle of the band the quantum localization corrections to the conductivity vanish
and Re σ(τ ) = e2nτ

m∗ , i.e. the electronic states are delocalized in the middle of the band.
The problem is interesting with regard to the quantum Hall effect. Since according

to the theorem of Aoki and Ando[22] ,if all the states are localized, Hall conductivity σxy
vanishes identically for any εF Delocalization of the electronic states in the middle of the
band due to Umklapp-processes may be the another possibility to explain the Quantum
Hall effect.
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