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Abstract

On a lattice with equal spacing on the logarithmic scale, a momentum operator
that respects the asymmetry of this nonlinear lattice yields a kinetics that can be
understood in terms of diffusion on an underlying ultrametric space, if one also
identifies the cannonical commutator with the time dilation operator. The motion
to which this non-conventional kinetics corresponds is irreversible, with an explicit
violation of time reversal symmetry resulting from the spreading with time of a
probability distribution over a larger and larger volume of the phase space.

1. Introduction

Recently there has been a great surge of activity associated with g-basic special func-
tions [1-5], the g-deformed commutations relations leading to a generalization of quantum
mechanics and non-commutative geometries associated with quantum groups[3]. In pre-
vious papers [6,7] we have shown how the generators of fractal and multifractal sets with
discrete dilatation symmetries are associated with g-difference operators [1] and how the
exact free energy of spin systems on hierarchical (topologically non-uniform) lattices can
be written in terms of g-integrals [2]. In this paper we would like to discuss how a ki-
netics based upon g-differential equations describes diffusion on a (topologically uniform)
hierarchical lattice.

The paper is organized as follows. In section 2, we review briefly the definitions of the
g-derivatives and integrals, and how they arise in the description of systems with discrete
dilatation symmetries. In section 3, we define the “momentum,” and time evolution
operators and we construct the state space of the quasi—position operator. In section 4
we find the solutions of the “Schrédinger equation” and compute the expectation value
of the canonical commutator. A discussion of the results is given in section 5.
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2. Scale invariance and ¢-calculus

We would first like to recall a number of definitions. We use a subscript in order
to indicate the variable with respect to which a g-derivative is to be taken and we use
a superscript to indicate the dilatation factor ¢, in parenthesis. Thus we define the
g-derivative as

@ prm oy Slazyy ) = flasys. )
ax f(x,y,...)_ (q—l)x : (1)
In contrast to the usual derivative, which measures the rate of change of the function in
terms of an incremental translation of its argument, the g-derivative measures its rate
of change with respect to a dilatation of its argument by a factor of ¢. A homogeneous
function f of degree ¢ satisfies

¢’ —1 f(z) = [¢]qM (2)

q—1 =z x

o () =

where the g-basic number ¢ has been defined via the second equality. It is useful to note
that the solution Fj, of the g-differential equation

O Fy(w) = 0 (3)

is either a constant or a function that is periodic in Inz, with period Ingq, such that
F,(qx) = Fy(z). With the modified product rule

0 g(2) f(x) = g(az)0L? f(x) + f(2)0LV g() (4)

one has, besides the arbitrary additive constant of integration that appears in the case of
ordinary integration, an arbitrary multiplicative function of integration satisfying (3), so
that the general solution to (2) (taking the constant of integration to be zero) is

f(z) = Fy(a)a? . ()
From (4), it also follows that we may define the dilatation operator
AD =0 4] ; AW = Al (6)

where the brackets denote the ordinary commutator.
The g-integral is defined via

| 10D = -0 0t (7)
n=0

for ¢ > 1, where DEQ) denotes the g-differential. Weierstrass functions[8] have the obvious
generalization to smooth periodic functions g(z) other than the cosine, viz.,

fw@) =3 g(q’;x)
n=0

a

(8)
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where a = ¢?. They obey

fw(z) ¢’g(x)

o\ = 9
T fW($) [¢]q T (1—(]).% ( )
and may be conveniently expressed in terms of g-integrals of the form,
) x
_ 2" [T pw et
fw(z) = q—l/o Dy {+e- (10)

Generalized Weierstrass-Mandelbrot functions [8], where the lower limit of the sum in
Eq.(8) is taken to be (—o0), and obey Eq.(2), may be written in terms of the“definite
integral”

ooxT x [ee]
/ ()DL E/ ()DL +/ v(t) DY
0 0 x

T
o

=(q—1) Y q"v(d" ) .

k=—o00

For v(t) = g(t)t~ (%) with the requirement that the first ng derivatives of g(t) vanish
at the origin, ng > the integer part of ¢ one has the generalized Weierstrass-Mandelbrot

function,
a? [0 g 9(t)
o) = | [ D45, (11)

Equations (10) and (11) make the scaling behaviour of these forms transparent, and
provide closed form expressions for their oscillatory amplitudes (5). Note that the gener-
alized Weierstrass—Mandelbrot functions have fractal graphs whose fractal (graph) dimen-
sion [8] is given by dy = 2—¢. It should be evident that the functions fiy (x) and fia (x)
are nowhere differentiable functions of their arguments, which are yet well behaved under
the g-difference operator, as can be seen from (2) and (9). In the limit of ¢ — 1, [¢]; —
¢, and although the functions themselves are blowing up at this limit, the logarithmic
derivative of fyyas(z) is well behaved and finite,

09 fw ()] fwm () = ¢/ . (12)

Such generalized Weierstrass (or Weierstrass-Mandelbrot) functions arise endemically in
systems with discrete dilatation symmetries [9]. We have already discussed the case of
the free energy of a spin system on a hierarchical lattice [6]; another example is the
autocorrelation function of a random walker[10] on an ultrametric space[11], which we
will discuss in the remainder of this paper.

3. Kinetics on a hierarchical lattice

Dimakis and Miiller-Hoissen have demonstrated that [12] that g-calculus [1,2] can be
obtained from discrete calculus on a lattice, where x = na, by an exponential coordinate
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transformation,

y=qrT =q" . (13)
Under this transformation discrete translations go over to discrete dilatations. The
g-deformed commutation relations obeyed by the transformed variables and their g¢-
derivatives lead to g-deformed quantum mechanics [12,13]. In this way, ¢-deformed
quantum mechanics has been given an interpretation in terms of quantum mechanics
on a lattice. The transformed momentum and Hamiltonian operators remain hermitian.
However, they satisfy Heisenberg’s equation of motion for the momentum operator, with
the ordinary definition of the commutator and not with the deformed definition, namely,
[H,P,] = 0. On the other hand, i[H,Y] # P,, and it can be easily verified that the
cannonical commutation relation is violated both in the ordinary and the g-deformed
definition. To be able to give an intepretation of the physics, one has to transform back
to the linear lattice.

We would now like to propose [14] a different choice for the momentum operator.
Notice that there is a kind of democracy between the right and left difference operators
on a lattice, which makes it natural for the (self-adjoint) momentum operator on the
discrete lattice to be defined [12] as their average, but this democracy does not hold

between 83(;1) and 85,‘171) which describe processes at different scales. On the linear chain,
exactly one unit is added to an interval everytime a step is made to the right wherever
one may be on the chain. However, when / is increased by unity in y space, the size of
the interval which is certain to include the origin increases by (¢ — 1)g*.

We will therefore deliberately take into account the ¢ v.s. ¢~! asymmetry and allow
the momentum not to be an observable. This gives us the freedom to associate the
momentum operator directly with the g-derivative (1),

Py=—iol® . (14)

This is clearly a crucial step, which makes the motion of the phase point along the
nonlinear chain ballistic, and in the increasing y direction. Below, we will discuss how
this motion can be understood in terms of an associated process, that of a diffusing
particle on an underlying hierarchical lattice, and therefore leads to nontrivial results.

If we compute the ordinary commutator of ¥ and P, we find that the canonical
commutation relation becomes,

[P, Y] = —i Al . (15)

We still have to make a choice of an independent operator for the Hamiltonian. In
this, we will be guided by the fact that in going from one dimensional continuous space
to the periodic lattice, the canonical commutator goes over from the c-number —i to
the operator —i(1 — a?H), where a is the lattice spacing and H is the Hamiltonian
operator, which has a rather obvious form proportional to the product of the right and
left difference operators [12]. For the choice of the time increment At = —ia?, one sees
that (1 — a?H) is the expansion up to first order in At of the time translation operator,
so that [P, X] = —iT.

12
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Let us therefore make the ad hoc choice, in our case, that [P,,Y] = —iT', where T is
now the time dilation operator. This is equivalent to the statement,

T=AQ . (16)

Clearly, the dilatation factor for time, ¢;, need not be equal to ¢; in fact we may define a
“dynamical exponent” ( via the relation,

q=q . (17)

Then,
Tf(y.t) = fy,aet) (18)

To be consistent in our use of the difference operators, we would like to write the
deformed “Schrodinger equation” also in terms of the Jackson derivative, in this case
with respect to time. We have at‘q” = (T —1)/[(gt — 1)t]. The Schrodinger equation then
becomes

101" fly 1) = Hof (,1) (19)
which defines our Hamiltonian operator. From (16) and (19), we find
T-1
Hy—i— 20
T (g -1t (20)

or,
i(g —1)Yoy”
(g — 1)t

The constant prefactor in Eq.(21) may be written as the inverse of a “basic number” [4]

H, =

¢t -1
= 1 (22)

where ( is the dynamical exponent defined in (17). (This dynamical exponent ¢, which
tells us how time scales with the distance, takes the value of 2 on Euclidean space; we
expect it to be equal to the random walk dimension [10] on the hierarchical lattice.) With
these definitions, the Hamiltonian operator becomes

1 YR
(g ¢t

which has the right “dimensions” for being an energy. Note that this “Hamiltonian” is
non-hermitian, as is our “momentum,” so that the energy is not an observable, neither
is it a constant of the motion; H, depends explicitly on time. Since [H, P;] # 0, the
momentum is not conserved either.

With the hermitian operator Y we will associate a position-like observable which we
will call the “quasi-position,” [15] the “quantum numbers” ¢ corresponding to the highest

H,= — (23)
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level so far attained by the phase point on the y-lattice. The expectation value of the
quasi-position operator is to be computed using the definition of the scalar product [12]

0 a(y) b(y)
<aa b>’y0 = / ( ( Dg(;q)
Oy[) y

o

=(q—-1) > aldyo) b(d"w)

k=—o00

Here 3, serves as the origin of this hierarchical lattice, and could be chosen equal to unity.

In order for this expectation value to converge at both ends of the infinite sum, the
unnormalized state functions corresponding to the pure states |¢) of the quasi-position
operator must have the following exponential form, again up to multiplication by functions
doubly periodic in Iny and Int with periods Inq and In ¢,

1 ¢ 9
cr(y.1) = exp{— [ WL M) (21)
2 T
where 7, = R’, and \ > 0 is arbitrary. For simplicity, we shall choose A = 1, but this
does not at all affect the subsequent discussion. By (16), Te;(y,t) = Ag(f)q(y, t). Thus,
one must have

eo(y, qit) = er(qy,t) (25)
From (24), one finds that if R = ¢, then we also have,
ADeg(y,t) = er_1(y,t) (26a)
and @
qu Ge(y, t) = €€+1(ya t) . (26b)

Deﬁning <€€(ya t)a Y Eé(ya t))y() = Qe(t)7 we have,

Q) =(q—Dyo > ge @ (27)
k=—o00
Notice that Qi1 (t) = Qe(g; 't) or Qu(t) = T Quy1(t). By (27) we also have,
Qi) =(g—Dyo >, ¢re @ 't (28)

k=—o00
which, upon redefining the dummy index to be k' = k — 1 gives,
Qe+1(t) = qQult) -

Thus, clearly, Q.(t) = quo(t) and the €,(y,t) span a representation of the algebra gen-

erated by the 8;;1), 5;‘1) and Y.
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Moreover, we may readily extract the scaling behaviour of Q,(t) from the above; one
easily finds, say from (27) that

Qe(t) = Upq, ()¢ (29)

where Uy 4, (t) is a function logarithmically periodic in ¢ with period Ing;. It should be
noted that the scaling behaviour of Q,(t) does not depend on ¢, and is thus completely
self similar with respect to the choice of the level of coarse graining.

4. Solutions of the Schrédinger equation and the spreading of the probability
distribution

The solutions of the “Schrodinger equation” (19) can be found by making a seperation
of variables. Taking f(y,t) = ¢g(y)h(t) and using (23), one has

" h(t) 1 Yo g(y)
ity (e 9w

Setting both sides of the equation equal to a constant, C, gives,

0\ h(t)
and @
Yo, gly)
0 [(],C . (31)

The solutions to these equations are given in terms of homogeneous functions, namely
power laws, up to multiplication by oscillatory functions,

h(t) = Fy ()Y (32)

9(y) = Fo(y)y* (33)
From (17) and (22), we find [(]4[¢]q, = [ ¥]q- On the other hand, from (31) and (33), we
have [x]q = [€]4[%]q., whence, x = (3. For finiteness as ¢ — 0o, we must have x, 1 < 0.
Finally, the solutions of Eq.(19) can be written,

Fo(y,t) = Fy(y) Fy, ()(y°1)" . (34)

Now we would like to show that the kinetics imply that a probability distribution
initially localized within an interval ¢* of the origin will spread in time in such a way that
the uncertainty in the position becomes precisely as large as the whole phase space avail-
able at that energy. This means that the probability distribution is essentially uniform
over the available phase space at any given time.

The absolute value of the uncertainty in the simultaneous determination of the “mo-
mentum” and “position” operators can be found as usual from the canonical commutation
relation. In our case, from (14,15) we have

(AYAP)| > [([Y, P)| = [(iAF) = [(~(a = DY Py + )| - (35)
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This tells us that the product of the uncertainty in the value of the position and the
momentum operators is larger than the expectation value of their product in absolute
value. Heuristically, one may say that, if ¥ ~ vt!/¢ where v is some effective diffusivity,
then the uncertainty | < AYAP, > | > |vt'/¢p,|, where p, is the average momentum
for this Y eigenstate. Thus, the uncertainty in the position is as large, and increases
with time in the same way, as the interval over which the particle or the phase point has
travelled within the time ¢, i.e., it is equally likely to be found anywhere within the phase
space volume it is energetically allowed to explore.

More precisely, the expectation value of [V, P,], taken with respect to the solutions of
the Schrédinger equation, normalized by their scalar product, yields,

¢ —1

([Y,Pq])=i[(q—1) + 1] =ig¥ . (36)

qg—1
With ¢¢ = ¢, this yields,
| < AYAP, > | > ¢ =¢/ . (37)

On the other hand, taking the expectation value of the canonical commutator between
the states |¢) and using (15,16) and (26) gives us (e, €4—1), which may be interpreted as a
transition probability between the states |[£ — 1) and |¢). This is again consistent with the
fact that uncertainty is a function of the leakage of the phase point to larger and larger
regions of the phase space, as time goes by.

5. Discussion and connection with g-statistics

In statistical physics, hierarchical lattices have arisen recently in the anomalous re-
laxation of spin glasses [1], transport in random media [17] and fully developed turbulent
media [18] as realizations of ultrametric spaces [11]. They consist of a hierarchy of nested
intervals, and one may associate a geometrical progression of spatial (and/or temporal)
scales with the different levels of the hierarchy. Diffusion on ultrametric spaces have been
thoroughly studied (see[16-20] and references therein) by other methods, including the
renormalization group [18,20].

Consider a lattice on which to each successive quasi-position indexed by the quantum
number ¢ there corresponds a geometrical increase in the number of microstates. To
proceed from the ¢£’th level of the hierarchy to the next, assume the particle has to
surmount an energy barrier of hight R, with the probabilities exp(—t/R’). (Note that
the manner in which these probabilities decrease could have been chosen differently, if we
had restricted our scalar product to a finite integral, and therefore the sum (27), only to
positive integers k). If one compares the expectation value Q(t) we have found for the
quasiposition operator with the exact solution of Schreckenberg [19] for diffusion on such
an ultrametric, heirarchical lattice, one immediately sees that Q,(t) is the probability for
a random walker to be found at time ¢ within an ultrametric distance ¢ from the origin
(The comparison is facilitated by realizing that since the sum in (27) ranges from —oo
to oo, one may change the signs of all the k indices appearing inside the sum). Qq(t)
corresponds to the autocorrelation function of a particle starting out at the 0’th level. For
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£ # 0, the @y may be thought of as ¢ times coarse grained autocorrelation functions. The
inverse of the ¢-coarse grained autocorrelation function is the ¢-coarse grained volume
explored by the particle on the average, within a given time ¢, and grows like ~ ¢!/¢.
Clearly this volume is the average number of distinct ¢-clusters visited after time ¢.

It might be noted that our Schrédinger equation (19) involves, on the RHS, only
the first derivative with respect to position (see (21)), in accordance with the fact that
diffusion on the hierarchical lattice corresponds to simply a drift with respect to the
quasi-position. This makes the Schrédinger equation resemble the Fokker-Planck equation
rather than the diffusion equation.

It is useful to recall [21] that the quantum mechanical expectation of the transition
of a free particle between two different space points on ordinary space can be associated
with a weighted sum over all possible paths of a classically diffusing particle between these
two points. The path integral over quasi-positions, however, is trivial - once the phase
point has progressed to some level ¢, the paths of the diffusing particle which go back
and explore sites within the phase space volume already broached (at levels < £) simply
do not contribute. Therefore the time dilation leads deterministically to an increase in ¢,
and to irreversibility [22]. On the other hand, the probability distribution for finding the
particle at some level < ¢ at a given time t is not trivial, as has been shown above.

Finally, we would like to make a connection with recent work on random sets and
g-distributions. It has been remarked by Arik et al. [23] that the basic number [n], with
g=(1—1/M) < 1 is the average number of distinct elements in a set which is contructed
in n steps by making random draws from a source set with infinitely many elements of
which there are M distinct kinds. In our case, ¢ > 1, which is complementary to that
considered by Arik et al., and we have a source set which is hierarchically constructed
so that it consists of nested subsets, or families, with a nonuniform probability of draws.
The draws have a clustering property, so that the probability for first making a draw from
another cluster that has the ultrametric distance ¢ to the one we start out with, decreases
with ¢. Then, the distinct number of ¢-level clusters that have been accessed grows with
time as power law in ¢. Such systems arise naturally in evolutionary models [24]. Further
work relating to hierarchies with a finite number of levels is presently in progress.
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