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Abstract

Studies by various authors suggest that higher-order networks can be more pow-
erful and are biologically more plausible with respect to the more traditional mul-
tilayer networks. These architectures make explicit use of nonlinear interactions
between input variables in the form of higher-order units or product units. If it
is known a priori that the problem to be implemented possesses a given set of in-
variances like in the translation, rotation, and scale invariant pattern recognition
problems, those invariances can be encoded, thus eliminating all higher-order terms
which are incompatible with the invariances. In general, however, it is a serious set-
back that the complexity of learning increases exponentially with the size of inputs.
This paper reviews higher-order networks and introduces an implicit representation
in which learning complexity is mainly decided by the number of higher-order terms
to be learned and increases only linearly with the input size.

1. Introduction

Biological evidence accumulated so far supports the presence of multiplicative-like
operations in the brain which can be considered as the simplest most fundamental non-
linear operation [1]. It has been argued that such neural units represent an interesting
and powerful set of computational machines [2-4].

The artificial neural units which have a linear combination of products of input com-
ponents as input are called higher-order neurons or higher-order units. The input vectors
are restricted to bipolar (i.e. {−1,+1}) components. Consider a network of M higher-
order units with an N dimensional receptive field common to all units. The postsynaptic
polarization potential for unit i (i = 1, . . . ,M) is given by

φi(x) = ω0
i +
∑
j

ω1
i (j)xj+

∑
j

∑
k

ω2
i (j, k)xjxk+· · ·+

∑
j1

. . .
∑
jN

ωNi (j1, . . . , jN)xj1 . . . xjN

(1)
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where x is the input pattern applied at the receptive field and ωmi (j1, . . . , jm) is the
weight connecting the product xj1 . . . xjm to the ith unit. The potential is passed through
a non-linearity in order to compute the output of unit i as follows:

yi(x) = f(φi(x) (2)

where f is usually taken as a sigmoidal function or the signum function. Each unit in
this network can implement any bipolar function defined over the receptive field, provided
that the weight values are set to appropriate values.

The implementational power of higher-order neurons is, however, overshadowed by
the combinatorial explosion in the number of weights with the input size N . Therefore,
feedforward networks and recurrent networks of higher-order neurons with a limited order
(often second order) are studied [5-8]. On the other hand, if it is known a priori that
the problem to be implemented possesses a given set of invariances like in the transla-
tion, rotation, and scale invariant pattern recognition problems, those invariances can
be encoded, thus eliminating all higher-order terms which are incompatible with the in-
variances [2,9,10]. How to encode those invariances into the higher-order weights is the
subject of Section II.

A major attraction of (artificial) neural networks is that for many problems they can
be trained to perform as required on a variety of input data and, following training,
can be expected to perform acceptably on data to which they have not been previously
exposed. When a neural network performs acceptably on previously unseen input data,
it is exhibiting a generalization capability. In many cases, the generalization error can
be bounded (a worst-case analysis), and this bound can be made arbitrarily small by
increasing the number of training instances. A useful bound can be established when the
number of training instances exceeds the Vapnik-Chervonenkis (VC) dimension [11-13].
The VC dimension is a measure of the capacity of the family of classification functions
realized by the learning machine.

The VC dimension of higher-order networks has been computed as the number of
higher-order terms that the network employs [14]. Thus, for better generalization, higher-
order networks should implement the training data using minimum number of higher-
order terms possible. It is also a fact that in order to implement a certain function,
in most cases only a few higher-order terms are required. Then, the storage of weights
does not suffer from the combinatorial explosion problem; but this is not the case for
the learning complexity, unless it is known a priori that the problem possesses some
invariances, since it must be decided by the learning algorithm that whether a higher-
order term is to be taken into consideration or not. Some approaches, in which learning
complexity is decided by the number of higher-order terms in the minimal set, rather
than the input size, have been proposed [3,15,16]. However, those approaches have their
own problems such as they are very prone to the local minima problem. In Section III,
we introduce a new model where the local minima problem is not that severe.
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2. Invariant Pattern Recognition

Automatic pattern recognition is indispensable to modern systems dealing with ad-
vanced information processing. It is desirable that such systems had the additional prop-
erty of recognizing patterns, without being influenced by distortions or transformations.
For example, in the recognition of handwritten letters, our interest is the structure within
the letter rather than the size or location or orientation of that letter. Invariant pattern
recognition is one of the hardest families of problems in the theory of perception and in
computer vision. The problem of invariant recognition is to understand how our percep-
tion of an object remains unaffected in spite of the considerable changes that the retinal
image of the object undergo [17].

For the practical application of neural networks, there is a need for models that exhibit
invariance to certain transformations in object recognition. Among the most important of
these transformations are translation, scale, and rotation. We are going to discuss, here,
the theoretical justification of encoding those invariances into the higher-order networks.
The network model used is the model described by Eqn. (1), and the receptive field is the
input pattern, say picture of a car, on a two-dimensional grid of black and white pixels.
Further details can be found in [2,9,10,18].

0.1. Translation Invariance

Consider a translation of the input pattern xj by n positions so that

yi(xj+n) = yi(xj) (3)

int terms of the notation of Eqn. (2). Since x can be any pattern, this imposes term by
term equality in the argument of the function f . Hence, we have from Eqn. (1) for the
first and second order terms ∑

ω1
i (j)xj =

∑
ω1
i (j)xj+n (4)∑∑

ω2
i (j, k)xjxk =

∑∑
ω2
i (j, k)xj+nxk+n (5)

Making the substitutions j → j − n, k→ k − n yields∑
ω1
i (j)xj =

∑
ω1
i (j − n)xj (6)∑∑

ω2
i (j, k)xjxk =

∑∑
ω2
i (j − n, k− n)xjxk (7)

It can be verified that, if the limits of the summations on the right-hand side are infinite
or if a grid with periodic boundary conditions is considered, the limits can be set equal
on both sides. Then, it follows that

ω1
i (j) = ω1

i (j − n) (8)

ω2
i (j, k) = ω2

i (j − n, k− n) (9)
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These equations imply that the first order weights are independent of the input position,
whereas the second order weights are functions of vector differences only:

ω1
i (j) = ω1

i (10)

ω2
i (j, k) = ω2

i (j − k) (11)

These requirements reduce the number of second order weights from N2 to order N . In
most cases, the second order terms are sufficient to implement translational invariance.

0.2. Scale Invariance

The condition to be satisfied in case of scale invariance is the following:

yi(xaj) = yi(xj) (12)

where a is a scale factor. Applying the same procedure as above leads to the following
constraints on the weights:

ω1
i (j) = ω1

i (j/a) (13)

ω2
i (j, k) = ω2

i (j/a, k/a) (14)

It is appropriate to consider a scale transformation in rectangular coordinates (u, v), so
that position j is expressed as the vector j = (uj , vj). A set of solutions to the second
order weight constraint is

ω2
i (uj , vj, uk, vk) = ω2

i (uj/vj , uk/vk) (15)

ω2
i (uj , vj, uk, vk) = ω2

i (uj/uk, vj/vk) (16)

ω2
i (uj, vj, uk, vk) = ω2

i ((uj − uk)/(vj − vk)) (17)

Any other solution that satisfies Eqn. (14) could also be used.

0.3. Rotation Invariance

In case of rotation about the origin, we consider a two-dimensional space in polar coordi-
nates (r, θ). It can be shown that the following weight constraints fulfill the requirement
for rotational invariance:

ω1
i (rj, θj) = ω1

i (rj) (18)

ω2
i (rj, rk, θj, θk) = ω2

i (rj, rk, θj − θk) (19)
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0.4. Combined Transformations

Combination of transformations, e.g. scale and translation invariance, is interesting from
applications point of view. Consider first the case of translation by n positions, followed
by a change of scale by factor a. The constraints on the first and second order weights
are

ω1
i (j) = ω1

i ((j − n)/a) (20)

ω2
i (j, k) = ω2

i ((j − n)/a, (k− n)/a) (21)

while for scale followed by translation the constraints are

ω1
i (j) = ω1

i (j/a − n) (22)

ω2
i (j, k) = ω2

i (j/a− n, k/a− n) (23)

If we consider the case in rectangular coordinates (u, v), the solution

ω2
i (uj, vj, uk, vk) = ω2

i ((uj − uk)/(vj − vk)) (24)

satisfies both scale and translation invariance independent of the order.
In case of a change of scale by a factor a and rotation about the origin by an amount α

for a system in polar coordinates (r, θ), the order of transformation makes no difference.
The weight constraints for the first and second order weights are

ω1
i (rj, θj) = ω1

i (rj/a, θj − α) (25)

ω2
i (rj, rk, θj, θk) = ω2

i (rj/a, rk/a, θj − α, θk − α) (26)

The first order weight is independent of the input, whereas a convenient solution to the
second order constraint is

ω2
i (rj, rk, θj, θk) = ω2

i (rj/rk, θj − θk) (27)

Simultaneous invariance with respect to translation, scale, and rotation can be achieved
using third order weights. The weights ω3

i (j, k, l) and ω3
i (j
′
, k
′
, l
′
) are set equal if the cor-

responding triangles (j, k, l) and (j
′
, k
′
, l
′
) have the same angles.

0.5. Learning algorithm

After the imposition of the transformational invariances, the values of the independent
weights are to be decided through a learning algorithm. The simple perceptron learning
rule can be used, where each weight is updated as

∆ωmi (j1, . . . , jm) = η(di(x)− yi(x))xj1 . . . xjm (28)

where di(x) is the desired output for the input image x and η is the step size. Considering
the bipolar nature of the inputs, the above perceptron rule is efficient and can lead to
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rapid convergence. Other learning algorithms based on the minimization of the cost
function

E =
1
2

∑
i

∑
x

(di(x)− yi(x))2 (29)

through the gradient-descent method or some other methods, can be used.

3. Learning Higher-Order Terms in an Implicit Represantation

In the general case, i.e. when there exists no a priori known invariances in the problem,
the main objective is how to learn those relevant higher-order terms in an algorithm with
polynomial time increase with the input size. A well known example that satisfies this
objective is the network of product units [3]. However, there is a serious set back. The
update equations in the learning algorithm contain periodic functions, which results in a
severe suffering from the local minima problem.

We introduce, here, a network model where learning complexity increases linearly with
the input size and no periodic functions are present. Only the main points of the model
are stated here. Further details and simulation results are to be discussed somewhere else
[19]. The network implements type of functions F : {−1, 1}N → {−1, 1}M , where M = 1
is taken for simplicity. It is, however, straightforward to extend it to the case where M
is any desired positive integer.

The network output for the input pattern x, denoted by O(x), is given as

O(x) = tanh(β
K∑
m=1

gmA
m(x)) (30)

where β is a constant, K is a measure of the network’s topological complexity analogous
to the number of hidden units in a feedforward multilayer network, and gm are adjustable
weights to be determined by the learning algorithm. Am are sums of some Gaussians:

Am(x) =
z(x)∑
l=q(x)

(−1)l−li exp(−(αlmBlm(x))2) (31)

where αlm are adjustable weights to be determined by the learning algorithm, li is
the smallest integer greater than −(N + 5)/2, q(x) is the smallest integer greater than
−(n−(x) + 5)/2 and z(x) is the largest integer less than (n+(x) + 4)/2; where n−(x) and
n+(x) are the number of −1’s and the number of +1’s in the input pattern x, respectively.
Blm are defined as

Blm(x) =
N∑
i=1

L(γωmi )xi − L(γvm) − 2l (32)

where γ is a constant, ωmi and vm are adjustable weights to be determined by the learning
algorithm and L denotes the logistic function, defined by

L(x) =
1

1 + exp(−x)
(33)
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Am can implement any higher-order term in Eqn. (1). Consider the higher-order term
xk1xk2 . . . xkr , where kr is even. Let

wmi =
{

+∞ for i = k1, k2, . . . , kr
−∞ otherwise

and vm = −∞. This implies that

Blm(x) = xk1 + xk2 + · · ·+ xkr − 2l (34)
There exists l∗ so that Blm(x) = 0 at l = l∗, hence all contributions in the sum in
Am(x) are negligible except the one at l = l∗. Therefore, |Am(x)| is approximately 1 and
the overall sign can be absorbed into gm if required. The above higher-order term and
Am(x) subject to Blm(x) in Eqn. (34), have the same following symmetries. The first
symmetry is the invariance with respect to the interchange of the values of xki and xkj ,
where 1 ≤ i ≤ r and 1 ≤ j ≤ r. The second symmetry is that when the sign of xki , where
1 ≤ i ≤ r, is reversed then both the higher-order term and the Am(x) reverse their signs.

Implementation of the higher-order term xk1xk2 . . . xkr in case of odd r can be seen
by taking vm = +∞ and following the above steps.

Learning of the adjustable weights is through the minimization of the following cost
function by means of the gradient-descent method:

E = E1 +E2 (35)

where the first part is the usual quadratic cost

E =
1
2

∑
x

(d(x) −O(x))2 (36)

and the second part performs weight elimination [20]

E =
1
2
λ

M∑
m=1

(gm/g∗)2

1 + (gm/g∗)2
(37)

where λ and g∗ are some constants. The role played by the weight elimination is to make
those unnecessary g weights vanish, so that implementation takes place using minimal
number of higher-order terms.

4. Conclusions

The use of higher-order neurons has been examined in this paper. Invariant recogni-
tion of patterns and images using higher-order neural networks has been reviewed.

A model for learning higher-order correlations within a given data has been proposed.
In the model, learning complexity is basically decided by the number of higher-order
terms to be implemented and increases linearly with the input size. The model should
benefit from a broad range of potential applications.
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