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Abstract

The phenomenon of order by disorder in frustrated magnetic systems is reviewed.
Disorder (thermal or quantum fluctuations) may sometimes give rise to long range
ordering in systems with frustration, where one must often consider the selection
among classically degenerate ground states which are not equivalent by any sym-
metry. The lowest order effects of quantum fluctuations in such frustrated systems
usually resolves the continues degeneracy of the ground state manifold into discrete
Ising–type degeneracy. A unique ground state selection out of this Ising degener-
ate manifold then occurs due to higher order effects of quantum fluctuations. For
systems such as face-centered cubic and body-centered tetragonal antiferromagnets
where the number of Ising parameters to describe the ground state manifold is not
macroscopic, we show that quantum fluctuations choose a unique ground state at
the first order in 1/S. However for kagomé antiferromagnet where the ground state
manifold is macroscopic, a unique ground state selection can only occur at high or-
ders in 1/S. We show that the main effect of the zero–point fluctuations is at small
wavevector and can be well modeled by an effective biquadratic interaction of the
form

∆Eeff
Q = −1

2
Q
∑
i,j

(Si · Sj)2/S3

This interaction opens a quantum spin gap by splitting the classical zero–energy
modes into one zero–energy Goldstone mode and nonzero energy modes. We calcu-
late this quantum gap at relative order 1/S using the standard Hartree decoupling
of the higher order interaction terms.

1. Introduction

Interest in frustrated magnetic systems and quantum fluctuation effects in such sys-
tems have greatly increased in the last few years.[1, 2] Disorder, antiferromagnetic inter-
actions of competing strength, and certain lattice symmetries often lead to situations,
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where the energy of the spin bonds in the system can not be minimized simultaneously,
the phenomenon known as “frustration”. In such systems, a degenerate ground-state
manifold often results. Probably the simplest example is the Ising antiferromagnet on a
triangle lattice as shown in Figure 1. Considering a single triangle of spins, one sees that
after fixing the direction of one spin to remove the global up-down degeneracy, a two fold
degeneracy remains. Thus a ground state degeneracy arises as the system is unable to
simultaneously satisfy the minimum energy condition for all bonds in the system. This is
the principle effect of the frustration. It assures that the classical ground state manifold
is of higher symmetry than the underlying Hamiltonian. In such systems, fluctuations
(which can be thermal or quantum) play a special role because they may partially or
completely lift the degeneracy and make the system more ordered.

There are now many examples of systems which classically exhibit an accidental de-
generacy which is removed by quantum mechanics. As we will discuss, this phenomenon
occurs frequently in the context of the Heisenberg model of antiferromagnetism, for which
the Hamiltonian is

H = J
∑
<ij>

Si · Sj , (1)

where < ij > indicates a sum over pairs of nearest neighbors. The Heisenberg anti-
ferromagnet (AF) on a square lattice with random ferromagnetic (F) defect bonds as
illustrated in Figure 1 is one example of a frustrated quantum spin system. Models of
this type were proposed in connection with magnetic properties of CuO2–plane in high-Tc
cuprates, where hole doping in the oxygen site causes the adjacent interaction between
nearest neighbor Cu–spins (S=1/2) to be ferromagnetic (F) and therefore leads to frus-
tration. This type of frustration caused by site disorder is common to most of the spin
glasses and therefore called spin glass frustration[2]

Another example, one in which the frustration is geometrical (i. e. it does not require
adjustment of the magnitude of the coupling constants), is that studied by Shender[4] in
which spins on a BCC lattice have strong second neighbor antiferromagnetic interactions
and weaker first neighbor interactions as shown in Figure 2. In that case, the geometrical
arrangement guaranteed that the classical exchange field at any site on one sublattice
due to the spins in the other sublattice was zero. One therefore has two simple cubic
antiferromagnetic sublattices which are decoupled in the mean field sense.

So, for such a classical system, the energy is independent of the value of the angle
θ between the two sublattices. The ”optical” mode wherein one sublattice precesses
relative to the other one thus accidentally has zero energy (phason mode). However, as
Shender showed[4] and was verified by inelastic neutron scattering[18], this optical mode
develops a nonzero energy when quantum fluctuations are included. Perhaps the easiest
way to see this is to calculate the quantum zero–point energy as a function of θ. Simple
arguments[17], which we will repeat below, show that the zero point energy is minimized
by collinear spin arrangement (i.e. cos(θ)2 = 1)[5].

A simple physical explanation to the tendency toward collinear ordering by quantum
fluctuations is given by Henley.[6, 7] What happens when external fields hi are applied
to an antiferromagnet?. If hi is uniform, it is a familiar fact that the fixed–length spins
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Figure 1. Top: A triangle of three Ising spins with antiferromagnet interaction, exhibiting
“geometrical frustration” which results two–fold degenerate ground state manifold. Bottom: A
square of four spins interacting antiferromagnetically except for one ferromagnetic bond (which
could be induced by site disorder), illustrating frustration common to most spin glasses.[2]

in each sublattice prefer to be transverse to the field because they can gain energy by
relaxing towards it. This happens because there is no net coupling of the field to the
ground state in first order;

N∑
i

hi.Si = 0 (2)

If each Si turns transverse, each Si can deviate towards h and gains energy to O(h2).
This is illustrated in Fig. 3.

Now, because of disorder (fluctuations), the exchange field acting on (say) the even
sublattice has a random fluctuating component from the odd sublattice as illustrated
schematically in Figure 3. As argued above, the even sublattice should prefer to be
transverse to the ground state orientations of the odd spins. One can check that this
fluctuating field satisfies condition in Eq. (2), too. Consequently, the even and odd sub-
lattices must align collinear. They can do this either sense (parallel or antiparallel), so
the continuous degeneracy of the classical system is reduced to that of Ising-one. For the
case of BCC antiferromagnet shown in Fig. 2, remaining Ising type degeneracy is the true
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θ

Figure 2. Two antiferromagnetic sublattices on a BCC lattice. Note that the mean field due
to spins in one sublattice (i.e. spins at the corners shown by filled circles) on the spins in
other sublattice (i.e. spin at the center shown by open circle) is zero. Therefore in the classical
limit, the energy of the system is independent of θ, resulting an infinite degenerate ground state
manifold.

symmetry of the system and can not be removed[5]. Hence, the ground state selection by
quantum fluctuation in this simple example is as complete as symmetry allows.

Based on this argument, Henley[6, 7] proposed that this effect could be described
phenomenologically by an effective biquadratic exchange interaction of the form K[Si ·
Sj ]2, where the results of Ref. [4] indicated that K is of order J ′2/(JS), where J and
J ′ are coupling constants introduced below. Subsequently many examples of ground
state selection via quantum fluctuations have been analyzed.[8, 9, 10, 11, 12, 14] This
phenomenon is the analog of ordering by disorder due to thermal fluctuations, a concept
first discussed by Villain[13] for Ising systems and then extended to vector spin systems
by Henley.[6, 7] The same effect can be realized by configurational fluctuations associated
with random substitution in alloys.[7]

A related question in frustrated systems concerns the nature of the elementary exci-
tations. The Goldstone theorem indicates that at zero wavevector there should be one
zero–energy mode. In view of the classical degeneracy associated with the relative rotation
of decoupled sublattices, one finds additional zero–energy modes. However, in the pres-
ence of quantum fluctuations which remove the classical degeneracy, one can understand
the results of Ref. [4], namely that quantum fluctuations cause the extra zero–energy
modes to now have a nonzero energy at relative order J ′2/(JS)2 . Such “quantum gaps’
have been observed by inelastic scattering of neutrons.[18, 19] As we shall see, and similar
to the results of Ref. [4], in contrast to ground state selection, the gaps still occur at
relative order J ′2/JS2/S, even though one must go to higher order in J ′/J to completely
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resolve the structural degeneracy. Here we will calculate the quantum gap at relative or-
der order 1/S using the Dyson–Maleev[15] transformation. This provides an alternative,
and possibly simpler, calculation than in Ref. [4].

θ=?

δh⊥

ΕGAIN∼ −S⊥δh⊥

        ∼ −χ
⊥δh⊥

2
S⊥

δh⊥

θ=0,π
⊥ δh⊥

δh⊥

δh⊥

δh⊥

δh⊥

Figure 3. A schematic illustration of ordering by disorder. Top right figure shows the quantum

zero point fluctuations which give rise to a random field δh⊥ perpendicular to the direction of the

ordered moment. On the middle we show how an antiferromagnet orients itself to an external

field. On the bottom, we consider the fluctuating component of the spins in one sublattice as

an external field acting on the spins in other sublattice. This leads to collinear ordering by

zero–point fluctuations of the spins. See text for detail discussion.

Since the work of Shender[4] and Henley[6, 7], a large number of systems have been
studied, such as AF spins on a square and cubic lattice with nearest and next–nearest
neighbor interactions, AF spins on a pyrochlore lattice, etc. In the case of interest to
us here, it is found that quantum fluctuations favor states in which spins are collinear.
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Hence, for a system where all possible collinear states are symmetry equivalent, the
removal of the infinite degeneracy of the ground state manifold by quantum fluctuations
is as complete as permitted by symmetry and one has a ground state with no accidental
degeneracy. To the best of our knowledge all collinear systems studied so far are of this
type and hence it is of interest to study how quantum fluctuations select a unique ground
state if the collinear states are not all symmetry equivalent. Recently we have addressed
this issue in Refs.[12, 14] by studying two particular systems, namely quantum spins
with nearest neighbor AF interactions on a body–centered tetragonal (BCT) and on a
face–centered cubic (FCC) lattices[12, 14]. In the BCT system, the Shender mechanism
can only resolve the continuous degeneracy of the ground state manifold into an infinite
discrete Ising type degeneracy. We analyzed the selection of a unique ground state out of
this infinite Ising type degenerate manifold by higher order effects of quantum fluctuations
in detail using interacting spin wave theory. Another case where collinear configurations
are not equivalent by symmetry is provided by the ”second kind of AF ordering” on an
FCC lattice[5] where one has two inequivalent collinear states; type A and type B. We
studied this system[5] and found that quantum fluctuations favor the state of type A.

In systems discussed above, number of parameters describing the ground state mani-
fold is finite (i.e. one for BCC and four for FCC antiferromagnet and even infinite for BCT
case but not macroscopic (i.e. (number of zero energy modes/N)→ 0 as N →∞ where N
is the total number of spins)). In such systems it seems that the complete removal of de-
generacy of the ground state manifold occurs at the first order in 1/S. However there are
systems where this is not the case. Kagomé lattice with only nearest antiferromagnetic
interaction is probably the best example for this. As we shall discuss below, in kagomé
antiferromagnet the number of zero-energy modes is macroscopic (i.e. it is proportional
to the number of spin sites in the system) and therefore removal of degeneracy of the
ground state manifold by quantum disorder is much more complicated than BCT case.
A unique ground state selection involves higher order quantum corrections in 1/S, which
prefers coplanar ordering.

Briefly this paper is organized as follows. In the next section, we study ordering by
disorder in a simple model. We demonstrate how to get the effective quantum interaction
between two subsystems which are classically decoupled. In this section we also study
the spin waves and gaps due to quantum fluctuations by treating spin–wave interactions
using the standard Hartree decoupling of the higher order interaction terms introduced
by the Dyson-Maleev transformation[15] to bosons. Here we show that the effects of
quantum fluctuations can be well approximated (only at zero wavevector) by the effective
biquadratic interaction mentioned above. We also show how to calculate the quantum gap
induced by zero–point fluctuations and its temperature dependence in a simple way using
Hartree decoupling approach. In Sec. III we considered FCC and BCT antiferromagnets
where a unique ground state selection by disorder occurs at higher order in (J’/J) but
still at first order in 1/S. Sec. IV is devoted to kagomé antiferromagnet where ground
state selection due to disorder occurs at second order in 1/S. Our conclusion will be given
in the Sec. V.

52



YILDIRIM

2. Order by Disorder: A Simple Case

Let us consider a Heisenberg antiferromagnet on a body centred cubic (BCC) lattice,
with short range exchange. We consider only nearest neighbor (nn) couplings, J ′, and
next nearest neighbor (nnn) couplings, J , and take J to be antiferromagnetic. When J ′

is sufficiently small, the system forms two simple cubic antiferromagnetic sublattices. We
therefore write the Hamiltonian of the system as

H = J
∑
〈α,i,j;2〉

Sα(i)Sα(j) + J ′
∑

〈αi,βj;1〉
S1(i)S2(j) , (3)

where Sα(i) denotes the ith spin on sublattice α (α =1 and 2). The first term on the
right–hand side of Eq. (3) is the interaction within the sublattices and second term is
that between sublattices.

Within the classical approximation the two sublattices may assume arbitrary relative
orientations in the ground state because of the vanishing local field of one subsystem
on the other (see Fig.2 ). This therefore gives a degeneracy additional to the global
Heisenberg rotational invariance of H. The additional degeneracy has consequences for
the exciton spectrum of the system. It leads to an excitation spectrum consisting of two
acoustic branches, each with a zero mode at q = 0. The Goldstone, or zero-energy mode
of one of these branches is due to the global Heisenberg invariance, while the second
branch is due to the out of phase rotation of spins in different subsystems. The absence
of a gap is a consequence of the additional degeneracy of the ground state structure
considered above. Therefore in the classical treatment we have a one-dimensional infinite
degenerate manifold of ground state with two zero energy modes at q = 0.

It is now well known that in such a situation quantum fluctuations select collinear
structures out of infinite degenerate ground state manifold[4, 16, 17] and opens a gap
at q = 0. We will reproduce this result here by evaluating the zero–point energy when
the two sublattices are arbitrarily oriented. However, in the interest of simplicity, we
will assume that the spin structure is coplanar, so that all spins lie in the yz–plane and
each sublattice, α, is characterized by a wave vector Q and a phase θα. For the spin–
wave expansion we introduce the following local axes at site i in sublattice α, so that the
S′z–axis lies along the direction in which the spin points in the ground state:

Sα(i) =

 1 0 0
0 cos(Q · ri + θα) 0
0 0 cos(Q · ri + θα)

S
′

α(i) , (4)

where, using Dyson-Maleev transformation, we have

S
′x
α (i) =

√
S

2

[
a+
α (i) + aα(i) − 1

2S
a+
α (i)a+

α (i)aα(i)
]

(5)

S
′y
α (i) = i

√
S

2

[
a+
α (i) − aα(i) − 1

2S
a+
α (i)a+

α (i)aα(i)
]

(6)

S
′z
α (i) = S − a+

α (i)aα(i) (7)
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and
Q = (π/a, π/a, π/a) , (8)

where a is the cubic lattice constant. The spin–wave expansion for the other config-
urations can be easily obtained by taking other Q values (i.e. Q = (π/a, π/a, 0) for
ferromagnetic ordering along c–axis). From Eq. (4) we see that the angle φα(i) that a
spin i in sublattice α makes with the crystal z–axis is

φα(i) = Q · ri + θα . (9)

From Eq. (4) one can write

Sα(i) · Sβ(j) = S2 cos(θjβ,iα) + Ô
(2)
jβ,iα + Ô

(4)
jβ,iα + O(1/S) , (10)

where the quadratic term is

Ô
(2)
jβ,iα = −S cos(θjβ,iα)

[
a+
α (i)aα(i) + a+

β (j)aβ(j)
]

+
1
2
S

[
1 + cos(θjβ,iα)

][
a+
α (i)aβ(j) + aα(i)a+

β (j)
]

+
1
2
S

[
1− cos(θjβ,iα)

][
a+
α (i)a+

β (j) + aα(i)aβ(j)
]
, (11)

where
θjβ,iα = Q · (rj − ri) + θβ − θα (12)

is the angle between spin i in sublattice α and spin j in sublattice β. In Eq. (10) Ô(4)
jβ,iα

is the four-operator term which is discussed in Sec. II.A.2.
Using Eq. (11) we may write the Hamiltonian up to terms quadratic in the boson

operators as
H = E0 +H0 +HI , (13)

where

E0 = −6NJS2

[
1 + (1/S)

]
, (14)

H0 = 3JS
∑

α=1,2,q

(
a+
α (q)aα(q) + aα(q)a+

α (q) + γ(q)
[
a+
α (q)a+

α (−q) + aα(q)aα(−q)
])

,

(15)
where

γ(q) =
1
6

∑
~∆

eiq·
~∆ = (1/3)

[
cos(qxa) + cos(qya) + cos(qza)

]
. (16)
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Also N is the number of the sites in each of the two simple cubic antiferromagnetic
sublattice, q is summed over N values in the interval −π < aqα < π (α = x, y, z), and
we introduced Fourier transformed variables by

a+
α (i) =

1√
N

∑
q

a+
α (q)eiq.ri . (17)

The interaction between sublattices is

HI = 2J ′S
∑
α,β,q

(
Aαβ(q)

[
a+
α (q)aβ(q) + aα(q)a+

β (q)
]

+Bαβ(q)
[
a+
α (q)a+

β (−q) + aα(q)aβ(−q)
])

, (18)

where Aαα = Bαα = 0, and, for α 6= β, we have

Aαβ(q) =
1
8

∑
~δα,β

[
1 + cos(Q · ~δα,β + θβ − θα)

]
e−iq·

~δα,β , (19a)

Bαβ(q) =
1
8

∑
~δα,β

[
1− cos(Q · ~δα,β + θβ − θα)

]
e−iq·

~δα,β , (19b)

where ~∆ is summed over second-neighbor vectors, and ~δα,β is summed over the four
first–neighbor vectors which connect sublattices α and β.

We may characterize the orientation of sublattices with respect to each other by a
single parameter θ, so that the angle between spin at the corner (0,0,0) and at the center
(1/2,1/2,1/2) is

θ =
3
2
π + θ2 − θ1 (20)

One see that with this definition Eq. (19) can be rewritten as

Aαβ(q) = Cαβ(q) + Sαβ(q) (21a)

Bαβ(q) = Cαβ(q) − Sαβ(q) , (21b)

where Cαβ(q) and Sαβ(q) are the matrix elements of the matrices

C(q) =
[

0 c(q)
c(q) 0

]
(22)

and

S(q) =
[

0 cos(θ)s(q)
cos(θ)s(q) 0

]
, (23)
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where s(q) and c(q) are

s(q) = sin(qxa/2) sin(qya/2) sin(qza/2) ,
c(q) = cos(qxa/2) cos(qya/2) cos(qza/2) . (24)

The bilinear Hamiltonian in Eq. (13) can be written in matrix form as

H = E0 +
1
2

∑
q

X+(q)M(q)X(q) . (25)

Here

X(q) =
(

V(q)
V+(−q)

)
, (26)

with

V(q) =
(
a1(q)
a2(q)

)
(27)

and the matrix M(q) is

M(q) =
(

H1(q) H2(q)
H2(q) H1(q)

)
, (28)

where H1 and H2 are the two dimensional matrices

H1(q) = 6JS
[
I + [2J ′/(3J)]A(q)

]
(29a)

H2(q) = 6JS
[
γ(q)I + [2J ′/(3J)]B(q)

]
. (29b)

Here I is the two dimensional unit matrix and the matrix elements of A(q) and B(q) were
given in Eqs. (21). After diagonalizing the matrix M(q), one finds that the Hamiltonian
in Eq. (25) can be written in terms of normal mode operators c+α (q) and cα(q) as

H = E0 + ∆EQ +
∑
α,q

εα(q)c+α (q)cα(q) , (30)

where α = 1, 2 labels the eigenvalues of M(q) and where the first quantum correction,
∆EQ, is

∆EQ =
1
2

∑
α,q

εα(q) . (31)

Here the εα(q) are the positive square roots of the roots of the characteristic equation of
the dynamical matrix D(q)

D(q) =
[
H1(q) + H2(q)

][
H1(q) −H2(q)

]
(32)

= E2
0(q)

[
I + 4jP(q)

][
I + 4jR(q)

]
, (33)
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where
j = J ′/(3J) (34)

E0(q) = 6JS
√

1− γ2(q) (35)

and the matrices P and R are

P(q) =
1

2[1 + γ(q)]

[
A(q) + B(q)

]
=

1
1 + γ(q)

C(q) (36)

R(q) =
1

2[1− γ(q)]

[
A(q)−B(q)

]
=

1
1− γ(q)

S(q) . (37)

We may use Eq. (31) to express the zero–point energy per site in dimensionless units,
∆E′Q, as

∆E′Q ≡ ∆EQ/(6NJS2) =
1

12NJS2

∑
q

tr(
√

D)

=
1

12NJS2

∑
q

E0(q)tr(
√

I + Yq)

≡ 1
2S
〈tr(
√

I + Yq)〉q ≡
1
S

∆eQ , (38)

so that S−1∆eQ is the correction to the ground state energy in dimensionless units at
relative order 1/S, and

Yq = 4j
(
P (q) +R(q)

)
+ 16j2P (q)R(q) (39)

and 〈. . .〉q represents the following q–summation over the first Brillouin zone

〈f(q)〉q =
1

6NJS

∑
q

E0(q)f(q) =
(
a

2π

)3 ∫ π/a

−π/a
dqx

∫ π/a

−π/a
dqy

∫ π/a

−π/a
dqz
√

1− γ(q)2f(q) .

(40)
To get an analytical expression for the effective interaction between antiferromagnetic

sublattices, we now follow Ref. [12] and expand ∆eQ in powers of j. For the regime of
interest |J ′| < |J |, j = [J ′/(3J)] < 1/3. Therefore we write ∆eQ in Eq. (38) as

∆eQ =
∞∑
n=0

Cn〈tr(Yn
q)〉q Cn = (−1)n−1 (2n)!

22n+1(n!)2(2n− 1)
(41)

and then collect the terms which are of the same order in j to get ∆eQ in the form

∆eQ = ∆e(0)
Q + ∆e(2)

Q j2 + O(j4) . (42)
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In above expansion we note that odd terms in j (and thus in cos(θ)) do not survive
after q–summation over the first Brillouin zone. From Eqs. (39) and (41) we see that

∆eQ = Const. + 16C2〈tr(P2 + R2)〉q j2 + O(j4) . (43)

where Const. denotes terms which are independent of the cos(θ). After a little algebra
one finds that

∆eQ = Const. − 2〈ĉ2(q) + ŝ2(q) cos(θ)2〉q j2

= Const. − 2 〈ĉ2(q)〉q
[
1 + cos(θ)2

]
j2 , (44)

where
ŝ(q) =

1
1− γ(q)

sin(
qxa

2
) sin(

qya

2
) sin(

qza

2
) (45)

ĉ(q) =
1

1 + γ(q)
cos(

qxa

2
) cos(

qya

2
) cos(

qza

2
) (46)

In writing above expressions, we used the fact that from symmetry 〈ŝ2(q)〉q = 〈ĉ2(q)〉q .
From this equation, we see that zero–point fluctuations select the collinear spin arrange-
ment where cos(θ)2 = 1 as the ground state.[5]

Spin Waves and Gap Due to Quantum Fluctuations

In the previous section we showed that in the classical picture there are infinite de-
generate spin structures and that the quantum fluctuations remove this degeneracy and
select the spin structure with cos(θ)2 = 1 (i.e. collinear ordering) as the ground state.
Here we will consider the effect of the quantum fluctuations on the other quantities, such
as spin waves and spin gap for the ground state structure, i.e. for cos(θ)2 = 1. We
first note that the Hamiltonian matrices H1 and H2 (or matrices C and S) in Eqs. (29)
commute ([H1,H2]=0) and thus we can diagonalize them simultaneously. This enables
us to perform the diagonalization analytically at any q-point, and obtain the spin–wave
spectrum as

ω2
m(q) = (6JS)2

(
1 + γ(q) + (−1)m4jc(q)

)(
1− γ(q) + (−1)m4 cos(θ)js(q)

)
m = 1, 2.

(47)
Here c(q) and s(q) are given in Eqs. (24).

It is particularly important to note that the two spin–wave modes all have zero energy
at q = 0 (γ(q) → 0 and s(q) → 0 as q → 0). This is exactly what one expects in the
classical limit, i.e. S → ∞ where the two antiferromagnetic sublattices are decoupled
in the mean field sense. However the absence of a spin–wave gap is a little surprising
at first glance, as we included quantum fluctuations via linear spin–wave theory in our
calculation, and it is these fluctuations which give rise to an effective interaction between
the AF-sublattices and force them to be collinear. Hence one would expect that including
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the effect of quantum fluctuations should open a gap at the zone center, as first pointed
out in Ref. [4] and verified by experiment.[18, 19] Thus, even though the linear spin–
wave theory is able to predict an effective interaction due to zero–point motions of the
spins, it is not capable of predicting the expected gap at q=0. Here we use an approach
alternate to that of Ref. [4], based on the use of the Dyson-Maleev[15] transformation
to treat spin–wave interactions correctly to leading order in (1/S). In agreement with
Ref. [4] we find that the magnitude of this gap is of relative order (J ′2/J2S). We will
estimate this gap here in two different approaches. First we will do this by introducing
an effective biquadratic interactions between sublattices to account the effect of quantum
fluctuations:

∆EQ ∼ −
Q

S3
(S1.S2)2 . (48)

This approach will be practically very useful to obtain the degeneracy and a qualitative
estimate of the spin–wave gaps at q=0. In the next subsection we will corroborate this
approach by analyzing the effect of the four-operator terms in the boson Hamiltonian.
At the end of this section, we will discuss the experimental consequences of the spin gap,
its temperature dependence, etc.

2.1. Effective Biquadratic Exchange Interactions

Here we show that the effect of the quantum fluctuations on the ground state and the
spin–wave spectrum at zero wave vector at the lowest order in (J ′/J) can be represented
by an effective biquadratic interaction[6] of the form

∆Eeff
Q = −1

2
Q
∑
iα,jβ

(Sα(i) · Sβ(j))2/S3 , (49)

where the sum is over the nearest neighbor spins. Here Q is of order (J ′/J)2. In the
next subsection we will show that the spin–wave spectrum at zero wavevector can indeed
be obtained from the effective interaction of Eq. (49), and we will thereby obtain an
evaluation of Q in terms of the parameters J and J ′ of our model. We point out that the
biquadratic interaction given above does not break the degeneracy between the collinear
states but is the dominant term which opens the spin–wave gap at q=0.

From Eq. (10), one obtains, after keeping only the quadratic interactions,

(Sα(i) · Sβ(j))2/S3 = S cos2(θjβ,iα) +
2
S

cos(θjβ,iα)Ô(2)
jβ,iα . (50)

Remembering that cos(θjβ,iα)2 = 1 for collinear spin structures, and using Eq. (11), one
can write

∆Eeff
Q = Const.+

∑
iα,jβ

{
Q

[
a+
α (i)aα(i) + a+

β (j)aβ(j)
]

−Q
2

[
1 + cos(θjβ,iα)

][
a+
α (i)aβ(j) + aα(i)a+

β (j)
]

59



YILDIRIM

+
Q

2

[
1− cos(θjβ,iα)

][
a+
α (i)a+

β (j) + aα(i)aβ(j)
]}

. (51)

A comparison of this equation with Eq. (11) indicates that adding ∆Eeff
Q to the

Hamiltonian in Eq. (13) leads replacing the matrices I,A(q), and B(q) in Eqs. (29) as

I→ (1 +
4Q
3JS

)I

A(q)→ (1 − Q

2J ′S
)A(q)

B(q)→ (1 +
Q

2J ′S
)B(q) (52)

such that the matrices H1 and H2 given in Eqs. (29) now are

H1(q) = 6JS
[
(1 +

4Q
3JS

)I + [2J ′/(3J)](1− Q

2J ′S
)A(q)

]
(53a)

H2(q) = 6JS
[
γ(q)I + [2J ′/(3J)](1 +

Q

2J ′S
)B(q)

]
. (53b)

After inserting the above replacements into the expressions of the spin–wave modes in
Eq. (32), the modes when quantum fluctuations are included are

ω2
m(q) = Tr[(H1(q) +H2(q))(H1(q) −H2(q))]

= (6JS)2

(
1 + γ(q) +

4Q
3JS

(1− (−1)ms(q)) +
4J ′

3J
(−1)mc(q)

)
×
(

1− γ(q) +
4Q
3JS

(1− (−1)mc(q)) +
4J ′

3J
(−1)ms(q)

)
(54)

Here c(q) and s(q) are given in Eqs. (24). As q→ 0 one has γ(q) → 1, s(q)→ 0, c(q)→ 1
and therefore

ω2
m(q→ 0) ≈ (6JS)22(1− (−1)m)(

4Q
3JS

)

= 192JSQ for m = 1
= 0 for m = 2 . (55)

This result indicates that in the two–fold manifold of zero wavevector modes which are de-
generate within linearized spin–wave theory, quantum fluctuations give a nonzero energy
so that only one Goldstone mode remains at zero energy.

2.2. Interacting Spin–Wave Theory– Hartree Decoupling of Fourth Order
Interaction Terms

The objective of this subsection is to obtain the spin–wave gap by including the effect
of quantum zero–point motion. In the previous subsection we showed that a biquadratic
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exchange interaction given in Eq. (49) predicts a spin gap with one zero–energy mode
at q = 0 (Goldstone mode). Here we perform an interacting spin–wave calculation using
the standard Hartree decoupling of the fourth order interaction terms which is known to
give correctly all contributions to the spin–wave energies at relative order (1/S). Since
the procedure gives the same structure of the spin–wave spectrum at zero wavevector,
we may use its result to determine the strength of the biquadratic interaction, Q in Eq.
(49):

Q = −J
′

2

(
[〈a+

α (i)a+
β (j)〉]ap + [〈a+

α (i)aβ(j)〉]p
)
, (56)

where 〈...〉 indicates a ground state expectation value and the subscripts ”p” and ”ap”
indicate that α(i) and β(j) must be associated with parallel or antiparallel spins, respec-
tively.

For this purpose we use the Dyson-Maleev transformation given in Eqs. (5-7) and the
local quantization axis defined by the rotation matrix in Eq. (4). Thus, one can obtain

Sα(i) · Sβ(j) = S2 cos(θjβ,iα) + Ô
(2)
jβ,iα + Ô

(4)
jβ,iα + O(1/S) , (57)

where Ô(2)
jβ,iα is given in Eq. (11) and the four operator term Ô

(4)
jβ,iα is

Ô
(4)
jβ,iα =

1
4

[1 + cos(θjβ,iα)][2nα(i)nβ(j) − a+
α (i)a+

α (i)aα(i)aβ(j) − a+
β (j)a+

β (j)aβ(j)aα(i)]

− 1
4

[1− cos(θjβ,iα)][2nα(i)nβ(j) + a+
α (i)a+

α (i)aα(i)a+
β (j) + a+

β (j)aβ(j)aβ(j)aα(i)] .(58)

In first order in 1/S we simply take out all contractions of operator averages, to get an
effective biquadratic interaction from Ô

(4)
jβ,iα,

Ô
(2),eff
jβ,iα = Const.+

L−M
2

[n(i) + n(j)] +
L +M

2
cos(θjβ,iα)[n(i) + n(j)]

− 1
2
L[1 + cos(θjβ,iα)][a+

α(i)aβ(j) + a+
β (j)aα(i)]

− 1
2
M [1− cos(θjβ,iα)][a+

α (i)a+
β (j) + aβ(j)aα(i)] , (59)

where i and j are neighboring sites on different sublattices α and β and

L = 〈a+
α (i)aα(i)〉 − [〈a+

α (i)aβ(j)〉]p ,
M = 〈a+

α (i)aα(i)〉 + [〈a+
α (i)a+

β (j)〉]ap . (60)

In order to get above expressions, we used the fact that operator averages of the terms
which have the factor [1 +cos(θjβ,iα)] only need to be taken over parallel spins. Similarly
those terms which have the factor [1− cos(θjβ,iα)] need to be averaged over antiparallel
spins. We also note that

[< a+
α (i)a+

β (j) >]p = [< a+
α (i)aβ(j) >]ap = 0 (61)
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Using the same argument given in the previous section, one can easily see that adding
Ô

(2).eff
jβ,iα into the Hamiltonian leads to the following replacements

I→
(

1 +
2J ′(L−M)

3JS

)
I

A(q)→ [1− (L/S)]A(q)
B(q)→ [1− (M/S)]B(q) , (62)

so that the matrices H1 and H2 given in Eqs. (29) now are

H1(q) = 6JS
[(

1 +
2J ′(L−M)

3JS

)
I +

2J ′

3J

(
1− L

S

)
A(q)

]
(63)

H2(q) = 6JS
[
γ(q)I +

2J ′

3J

(
1− M

S

)
B(q)

]
. (64)

Therefore the new spin–wave modes are

ω2
m(q) = (6JS)2

×
(

1 +
2J ′(L−M)

3JS
+ γ(q) + (−1)m

2J ′

3J

[
(1− L

S
)(c(q) + s(q)) + (1− M

S
)(c(q)− s(q))

])
×
(

1 +
2J ′(L−M)

3JS
− γ(q) + (−1)m

2J ′

3J

[
(1− L

S
)(c(q) + s(q))(1− M

S
)(c(q)− s(q))

])
.(65)

As q goes to zero, one obtains

ω2
m(q) ≈ (6JS)22

2J ′(L −M)
3JS

(
1− (−1)m)

)
≈ −48JJ ′S

(
[〈a+

α (i)a+
β (j)〉]ap + [〈a+

α (i)aβ(j)〉]p
)(

1− (−1)m)
)
, (66)

where m takes the values 1 and 2. Comparing this with Eq. (55) one identifies Q as in Eq.
(56). Note that because Eqs. (54) and (65) are not of the same form, this identification
of Q only applies to the zero wavevector spectrum. However, for the actual values of
J ′, J, L, and M , the modified spin–wave spectrum obtained from Eq. (65) or from the
effective biquadratic interaction given in Eq. (54) (with Q from above equation) is almost
identical in the whole zone.[14] From our calculation, it is apparent that the quantum
corrections to the spin waves mainly occur at wavevectors close to the zone center, where
they open a gap at q = 0, leaving one Goldstone mode at zero energy.

One might think that the above procedure could be used to determine the temperature
dependence of the gap, if the averages were interpreted as thermal averages, rather than
ground state averages. This approach would lead us to believe that the quantum gaps
would increase as the temperature is increased. This behavior strongly disagrees with
experiments,[19] which showed that the quantum gap has a temperature dependence close
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to that of the order parameter. In the boson calculation as outlined above, the result is
that the quantum gap energy, ωq for a fixed value of J ′/J is given by

ωq = (1/S)f1 [kT/(JS)] , (67)

where df/dx is positive. More generally one would expect a result of the form

ωq = (1/S)f1 [kT/(JS)] + (1/S2)f2[kT/(JS)] + O(1/S3) . (68)

Presumably, the second term dominates at all but the very lowest temperatures. A possi-
ble mechanism for this is that the spectral weight functions in a bosonic formulation are
usually replaced, in a more accurate calculation, by spectral weight functions associated
with spin operators, which have an amplitude proportional to 〈Sz〉 rather than to unity.
Replacement of 〈a+

α (i)a+
β (j)〉T by 〈Sz〉T 〈a+

α (i)a+
β (j)〉T would lead to the experimental

result. We are presently considering how to make this argument in detail.

3. Systems with More Than One Zero Modes

All of the studies on a very large number of frustrated magnetic systems show that
”order by disorder” is very general in that it should exist in many quantum systems
with a classically degenerate ground state. In the cases of interest to us here, it is
found that quantum fluctuations favor states in which spins are collinear. Hence, for a
system where all possible collinear states are symmetry equivalent, the removal of the
infinite degeneracy of the ground state manifold by quantum fluctuations is as complete
as permitted by symmetry and one has a ground state with no accidental degeneracy. To
the best of our knowledge all collinear systems studied so far are of this type and hence
it is of interest to study how quantum fluctuations select a unique ground state if the
collinear states are not all symmetry equivalent. This issue is addressed in this section
by studying two particular systems, namely quantum spins with nearest neighbor AF
interactions on a body–centered tetragonal (BCT) lattice and on a face-centered cubic
(FCC) lattice. In these systems, the Shender mechanism can only resolve the continuous
degeneracy of the ground state manifold into an infinite discrete Ising type degeneracy,
as we discussed above. The selection of a unique ground state out of this infinite Ising
type degenerate manifold requires higher order effects of quantum fluctuations. We will
briefly discus this below.

3.1. Ground State Selection in FCC Antiferromagnets

In this section we are concerned with the determination of the ground state of quantum
Heisenberg antiferromagnets on a face–centered cubic (FCC) lattice in the case when the
second neighbor isotropic antiferromagnetic interaction of the form JSi · Sj dominates
the isotropic nearest neighbor interaction (with coupling constant J ′), as illustrated in
Figure 4.

A seminal study of the classical ground state of this system was given by Yamamoto
and Nagamiya.[20] In particular, a relevant structure to study is that which they called
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Figure 4. Four antiferromagnetic sublattices on a FCC lattice. Nearest neighbors within a given
simple cubic sublattice are specified by vectors ∆, of which one is shown. Interactions between
nearest neighbors on the same sublattice are proportional to J and those between sublattice by
J ′. A few nearest–neighbor vectors δα,β connecting different sublattices α and β are δα,β are
shown.

type AF–II (we will refer to it as the ”second kind”), which has a two–fold degeneracy
between inequivalent structures called type A and type B, as shown in Fig. 5, and whose
domain of stability for the classical (S →∞) case is |J ′| < 2|J |.[21] This degeneracy of the
ordering of the second kind was found to be extremely robust: it was not removed by either
a tetragonal distortion, or by tetragonal anisotropy.[20] This system may be viewed as four
interpenetrating simple cubic antiferromagnetic sublattices in which the mean field on one
sublattice due to any of the other vanishes. Thus this system provides yet another example
of one which classically has a continuous degeneracy which we expect to be lifted by
quantum fluctuations.[1] The phenomenological biquadratic interaction mentioned above
causes the sublattices to be collinear, but it does not resolve the degeneracy between
structures of type A and type B. As we shall see, the degeneracy between type A and
type B structures is removed when the effects of quantum fluctuations are included to
higher order in J ′/J . For this type of calculation the formalism introduced in the previous
section is convenient. We also point out that in real systems there may be mechanisms
other than quantum fluctuations which could remove the degeneracy between the collinear
states. For example, dipolar interactions, single–ion anisotropy, biquadratic exchange
interactions, or elastic strain effects due to the dependence of the exchange tensor on
atomic displacements, etc. may play an important role. However, for the purpose of this
paper, we are interested in understanding the effects that quantum fluctuations alone can
have on the ground state selection and therefore we will give little consideration to other
possible interactions not included in the Hamiltonian given below.

We start with the following Hamiltonian

H =
∑
〈ij;1〉

J ′Si · Sj +
∑
〈ij;2〉

JSi · Sj , (69)

where 〈ij;n〉 indicates that the sum is over pairs of nth nearest neighbors. We are mainly
concerned with the case when J is dominant, and the system can be considered to be four
interpenetrating simple cubic antiferromagnetic sublattices. As we mentioned previously,
the effect of quantum fluctuations at second order in J ′/J is to cause the spins to be
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1st kind 2nd kind, type A 2nd Kind, type B

3rd kind 4th kind

Figure 5. Various non-equivalent collinear spin arrangements in the face-centered cube. (–)
and (+) represent spins up and down with respect to any given direction.

arranged collinearly.[4] Therefore, for the αth simple cubic antiferromagnetic sublattice
we introduce an Ising variable σα to specify its phase, so that σα gives the value of Sz
for the spin at position τα, where τα is (0,0,0) for α = 1 and (0.5,0.5,0.5) for α = 2. In
terms of these variables, the ground state energy, i. e. the effective interaction, denoted
Heff , then must be of the form:

Heff/J = C0 + C2(σ1σ2 + . . .+ σ3σ4) +C4σ1σ2σ3σ4 , (70)

where the coefficients Cn depend on J ′/J and 1/S. In writing this result we omitted
odd–order terms in the σi, since the original Hamiltonian of Eq. (69) is invariant under
Si → −Si for all i. Now it is possible to eliminate some terms in Eq. (70) using the
symmetry operations of the system. First of all, the reflection operation with respect
to the [100], [010] or [001] planes should not change the energy. Since these symmetry
operations change the sign of any two σi, the coefficients C2 in Eq. (70) must be zero.
Thus we have

Heff/J = C0 +C4σ1σ2σ3σ4 . (71)

Since there is no symmetry operation which changes the sign of the only one σi (or
equivalently, three of them), the term σ1σ2σ3σ4 is allowed by symmetry. It therefore
follows that we have two inequivalent collinear spin arrangement in which σ1σ2σ3σ4 is
minus or plus one. (See Fig. 5.) The first one where σ1σ2σ3σ4 = −1 is called “the second
kind of type A.” For this configuration it is possible to find a unique [111] direction,
perpendicular to which, each net plane contains a ferromagnetic array of spins and the
sequence of such net planes is stacked antiferromagnetically. In other words, this structure
has trigonal crystal symmetry and therefore subject to a rhombohedral distortion. In
contrast, ordering of “the second kind of the type B” (also shown in Fig. 5) for which
(σ1σ2σ3σ4 = 1), still has cubic symmetry.

In order to determine which of these structures is really the ground–state configu-
ration, we therefore need to know the sign of C4 in Eq. (71). In Ref.[14] we studied
the complete removal of the remaining degeneracy between these two inequivalent of
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collinear structures by analyzing the contribution to the spin–wave zero–point energy
which is shown to be of the form;

Heff/J = C0 +C4σ1σ2σ3σ4(J ′/J)4 + O (J ′/J)5 ,

where C4 is a positive constant. (The term of order (J ′/J)5 is also given in Ref.i[14]
explicitly.) Therefore the spin structure with σ1σ2σ3σ4 = −1, known as second kind
of type A, is chosen to be the ground state by quantum fluctuations. We note that in
this particular spin configuration, the magnetic symmetry is trigonal and therefore the
magnetic ordering should gives rise to a structural distortion away from cubic symmetry.
In fact, most of the monoxides of the iron group elements,[20, 22, 23] such as MnO,
have the magnetic structure found here and exhibit a small trigonal distortion from
cubic symmetry. However we mention a caution that in these real systems there may be
other energies, such as single ion anisotropy, dipolar, further neighbor, or magnetoelastic
interactions, which should be considered together with those discussed here.

3.2. 3D Ordering in BCT Antiferromagnets

Three dimensional magnetic ordering in BCT antiferromagnet is of special interest
because the magnetic properties of such structures are believed to be relevant to high
temperature superconductivity. The most important example of such layered structures
is perhaps La2CuO4[24] in which long–range magnetic order is observed below TN ∼ 300
K. However it is now believed that most of the magnetic properties can be understood
in terms of the Dzyaloshinskii–Moriya interaction which arises due to the orthorhombic
distortion.[25] Recently, new systems which preserve the tetragonal symmetry at all tem-
peratures have been studied. Rare–earth (R) cuprates, R2CuO4 [26] (which superconduct
after electron doping [27]) and Sr2CuO2Cl2 [28] are the most studied ones. In particular,
the latter compound is the best experimental realization of the system that we are going
to study in this subsection. However, as we have discussed in Ref. [29], there are other
type of interactions, such as the magnetic dipole interaction, magnetic anisotropy, and
biquadratic exchange interactions, which may compete with the effective interactions due
to quantum disorder we are going to calculate here. Accordingly, it is important calcu-
late the effective interaction due to quantum fluctuations in order to compare its strength
with that of other interactions.

We now describe in detail the model that we are going to study. We consider a BCT
antiferromagnet with dominant antiferromagnetic interactions between nearest neighbor
in the same basal plane and weaker interactions between nearest neighbors in adjacent
planes, as illustrated in Fig. 6. (The interplane interactions may be either ferromagnetic
or antiferromagnetic.) We write the Hamiltonian as

H =
M∑
p=1

Hp +
M−1∑
p=1

Hp,p+1 (72)
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where Hp refers to the p-th plane alone and is given by

Hp = J
∑
i,δ1

Sp(ri) · Sp(ri + δ1) (73)

and the interaction Hp,p+1 between the pth and (p + 1)-th planes is

Hp,p+1 = 2J⊥
∑
i,δ2

Sp(ri) · Sp+1(ri + δ2) (74)

where Sp(ri) is the spin at position ri in plane p. Also δ1 and δ2 are the vectors joining
a site to its NN’s in–plane and NN’s out–of–plane, respectively, as shown in Fig. 6.

2δ

1δ

Figure 6. A spin with its interactions. The full lines show the nearest–neighbor vectors, ~δ1
in the plane for the interaction J . The dashed lines show the nearest–neighbor vectors ~δ2 from
the pth plane to the p + 1st plane (above it) for the interaction J⊥. Note that the mean field
interaction between adjacent planes is zero and thus the direction of the staggered magnetization
in each plane is arbitrary.

From the results of the previous section, we one may conclude that zero–point fluctu-
ations give rise to a collinearity zero–point energy of order

∆E ∼ −J2
⊥S
[
1 + (n̂i · n̂i+1)2

]
/J , (75)

where J (J⊥) is the antiferromagnetic coupling between nearest–neighbor spins in the
same (adjacent) basal plane of the BCT lattice and n̂i defines the orientation of the
staggered magnetization in the ith plane. Thus the continuous degeneracy with respect
to the orientations of the n̂’s, is resolved into a two–fold degeneracy for each collinear
n̂i. Actually, the exact symmetry of this Heisenberg system is such that if one fixes
the n̂i for alternate (even–numbered, say) planes, then the configuration obtained by
the replacement for all odd–numbered layers n̂i → −n̂i is degenerate in energy with
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the original one. This exact symmetry (due to the four–fold axes of the tetragonal
crystal) indicates that there is no possibility of finding an effective interaction of the
form Cn̂i · n̂i+1. However, symmetry DOES allow an interaction of the form Cn̂i · n̂i+2,
which would uniquely fix the orientation of all even numbered layers with respect to one
another. One should note the physical origin of these zero–point effects: although the
classical ground–state energy is independent of the n̂’s, the spin–wave spectrum does
depend on these variables. Thus the quantum zero–point motion, which involves a sum
over spin–wave energies, can introduce a dependence on the n̂’s and thus lead to ground–
state selection.

In order to treat arbitrary configurations we take advantage of the well established fact
that zero–point fluctuations favor collinear structures.[4] We study the complete removal
of the remaining degeneracy of the collinear spin structures by assigning an arbitrary
sign σi (i = 1, 2, . . .M) to the staggered moment of the planes as shown in Fig. 7. We
then develop an expansion scheme in which we can calculate the zero–point energy for
an arbitrary set of these Ising variables. We carry the calculations of the ground–state
energy up to the order in J⊥/J at which the classical degeneracy is first removed.

σ5=-1

σ4=1

σ3=-1

σ2=-1

σ1=1
z

y

x

2

1

3

4

2

1

3

4

a
I II III

Figure 7. Various spin structures. Structures I and II have unit cells which span 2 and 4 planes
(perpendicular to ẑ), respectively. In the right–most panel, spins of an arbitrary structure (III)
in the plane y = 0 are shown. The values of σi for the ith plane perpendicular to ẑ are given.

If we write the quantum zero–point energy, EQ as EQ = EC[1 + ∆eQ], where EC
is the classical ground–state energy of a single plane, then ∆eQ can be calculated as a
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perturbation series in j and 1/S. At first order in 1/S and up to the sixth order in
j = J⊥/J , the leading contribution to ∆eQ which involves the configuration of the planes
(assumed to be collinear) is

E({σi}) = E1 + CEG(j6/S)

[
−2σ1σ3 − 2σM−2σM

+2
M−2∑
i=1

σiσi+2 − 3
M−3∑
i=1

σiσi+1σi+2σi+3

]
,

where C > 0 and E1 are constants independent of the σ’s, and EG is the classical
ground–state energy. (Here sums from i to j when j < i are interpreted to be zero.) This
result shows that for M > 4 second–neighboring planes are antiferromagnetically coupled
in the ground state and thus the three dimensional spin structure can not described
by a single wave vector, as is often assumed. Thus the entire structure has only the
degeneracy associated with the relative phase of the odd numbered layers relative to the
even numbered layers. This degeneracy reflects a true symmetry of the system and can
not be removed.

In this way we establish that structure II of Fig. 7 is stabilized by zero–point fluctu-
ations, at least if one considers only effects at order 1/S. This stabilization energy is of
order J6

⊥S/J
5. Surprisingly, there is no σ–dependent contribution at order j4/S. Since

J⊥/J can be very much smaller than 1/S, we carried out perturbation theory in 1/S,
to locate contributions to the stabilization energy which were of order J4

⊥/J
3 but were

higher order in 1/S. We found a stabilization energy of order J4
⊥/(J

3S). As with the
zero–point energy of linear spin–waves, this energy stabilizes structure II of Fig. 7.

An interesting result from the effective interaction given above is found for a system
consisting of a small number of BCT layers. In particular, for a three–layer system, we
find that the first and third layers are parallel to one another in the ground state. It would
also be interesting to study experimentally a system with four BCT layers. In that case
our results indicate that all configurations in which both next–nearest neighboring planes
are parallel are degenerate with those in which both next–nearest neighboring planes are
antiparallel. Although this degeneracy will no doubt be removed by higher order effects,
it does suggest the possibility of obtaining unusual spin structures in extremely thin film
systems.

4. Kargomé Antiferomagnet: a System With Macroscopic Zero Energy Modes

The nearest neighbor Heisenberg antiferromagnet on kagomé lattice, shown in Fig. 8, is
one of the most studied example of a system with a macroscopic number of zero modes.
The interest in kagomé antiferromagnet was initiated by its proposal as a model for
two experimental systems; the insulating layered compound SrCr8−xGa4+xO19[10] and
a second layer of 3He adsorbed on graphite[11]. From the theoretical point of view, the
model is particularly interesting since it has all the ingredients such as low dimensionality,
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strong frustration, and low coordination number, required for a disordered ”spin liquid”
ground state.

C

AB

φ
i

φj φk

φl

φ
i

φj

φk

Figure 8. Top: Kagomé lattice for which the nearest neighbor antiferromagnet exhibits strong
frustration. Middle: Kagomé lattice with q=0 spin structure. Note that the classical ground
state energy does not depend on the angles (shown as φi, φj , etc) of the infinitely long chains of
A–B spins. Bottom:

√
3×
√

3 structure in which each hexagon of A–B spins have an arbitrary
angle (denoted as φi, φj , etc) with respect to C–spin axis.

The model considered here is described by the following Hamiltonian,

H = J
∑
<ij>

Si · Sj , (76)

where the sum runs over all the nearest–neighbor pairs on the kagomé lattice. In the
classical limit, all ground states satisfy the ”120o structure”, in which the angle between
each pair of nearest–neighbor spins is 120o. Two such spin structures (so called q=0 and√

3×
√

3) are shown in Fig. 8. From these two particular spin structures, one can easily
see that the degree of degeneracy in kagomé lattice is very large. For example, in the
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q=0 coplanar structure, one can generate new spin configurations by rotating an infinitely
long chain of spins A–B about the spin direction C without changing the total energy as
shown in Fig. 8. Similarly, in the

√
3 ×
√

3 structure, rotation of A–B–A–B–A–B spins
on a single hexagon about the spin direction C also does not change the energy of the
system. Hence, unlike the cases of BCC, FCC, and even BCT antiferromagnets where
number of zero–energy modes are not macroscopic, in the kagomé antiferromagnet the
degree of freedom to describe the ground state manifold is macroscopic.

Kagomé antiferromagnet has been extensively studied by spin wave theory[30, 31,
32], by various numerical techniques such as quantum monte carlo[30] and exact diag-
onalization for finite systems[33, 34], by perturbation[35], high–temperature[30], and N
expansion[36] techniques, etc. Hence, here we will not repeat any of these studies but will
give only simple ideas to see how ”order by disorder” work in this interesting system.

4.1. Coplanar Ordering by Disorder

In the case of BCC antiferromagnet discussed in Sec. II, the actual calculations of an
effective interaction due to quantum fluctuations are not overly complicated, and in fact,
a simplified calculation [3,4] is both quite short and quite easy to understand. However,
the case of BCC antiferromagnet involves only the removal of a one–parameter degen-
eracy. In Sec. III we have seen that more complicated removal of degeneracy involving
higher order corrections in J ′/J , but still at first order in 1/S occur for the BCT and
FCC antiferromagnets with strong second neighbor interactions. However the kagomé
antiferromagnet [6] presents an even more pathological situation.

Consider the so-called ”
√

3 ×
√

3” structure shown in Fig. 8. Here the C sublattice
spin point along the positive z-direction, which we refer to as the 12 o’clock direction. In
each hexagon of A and B spins one can place the A spins along the 4 o’clock direction and
the B spins along the 8 o’clock direction. To fully specify the orientations of the A and B
spins in a given hexagon we have to specify the angle φ which the normal to the fact of
the clock makes with a fixed axis. It is easy to see [7,8] that the ground–state manifold
of the classical system includes the direct product space in which each A-B hexagon is
assigned an arbitrary value of φ over the interval [0, 2π]. Furthermore, the classical
spin–wave spectrum, or equivalently, the spectrum of noninteracting spin waves in the
quantum model, has zero–energy local modes corresponding to varying the φ for any given
hexagon of A-B spins [8,9]. Furthermore, as we will see below, the noninteracting spin
wave spectrum is exactly the same for all coplanar configurations. This surprising hidden
gauge symmetry has been previously noted by Calker et al.[8] In view of the discussion of
Eqs. (44) we expect that the degeneracy present in the classical system is only completely
removed by quantum fluctuations at relative order 1/S2. Thus this situation is decidely
more complicated than that analyzed by Shender [1]. Here a) the classical ground state
degeneracy corresponds to the macroscopic entropy of a finite number of free angles per
lattice site, and b) the removal of degeneracy is not complete at first order in 1/S. Thus,
the ground state energy, EG, is of the form
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EG = −C2
2JS

2(1 +
α

S
+

β

S2
. . .) . (77)

where C2 (and later Cn) is a constant. A simple calculation analogous to that leading to
the result of Eq. (44) here yields

α = −C2
4

∑
<i,j>

| sin(φi − φj) | (78)

where i and j labels hexagons and < i, j > indicates a sum over pair of nearest neighboring
hexagons both of which involve the same two sublattices (e. g. both are A,B hexagons,
both are A,C hexagons, or both are B,C hexagons). Note that α is minimized for coplanar
spin arrangement: φi − φj = 0, mod π. Thus at this order all A-B hexagons must have
their spins in the same plane. Thus we set exp(φi) = σi, and coplanarity requires that
each σi is + or − 1. But since, at this order in 1/S, each of these variables can be chosen
independently in the ground state manifold, there remains an Ising degeneracy. This
remaining Ising degeneracy is only resolved by including the term in Eq. (77) proportional
to β. As we discuss below, this term favors the so-called ”

√
3×
√

3” structure discussed
by Elser[30] and by Harris et ali[31].

The corresponding calculation of the spin–wave spectrum is much more delicate. If
one includes spin–wave interactions within lowest order perturbation theory one would
expect to obtain a finite energy for the modes in view of the effective potential of Eq. (78)
induced by quantum interactions. Indeed, a simple decoupling of the fourth–order spin–
wave interactions as done in Sec.II leads to the local mode frequency, ωl as

ω2
l = C2

4S < n > , (79)

where n is the number of Bose excitations and < > indicates a ground state average.
However, this calculation is not self–consistent because a frequency of order S1/2 leads
to < n > being of order S1/2. The self–consistent version of Eq. (79) is

ω2
l = C2

5S(S/ωl) (80)

which leads to
ωl ∼ S2/3 . (81)

It seems likely, then, that the effective potential favors coplanarity, as in Eq. (78), but
would have a different dependence on S than given in that equation.

The final question one has to consider is the removal of the Ising degeneracy charac-
terized by the σi’s. A calculation[37] of the lowest order perturbation contribution to the
energy which depends on these variables gives a contribution to β in Eq. (77) of the form

β ∼ −C2
6

∑
i,j

σiσj , (82)
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which favors a ”ferromagnetic” arrangement of the σ’s. This arrangement is precisely the
”
√

3×
√

3” structure studied previously [6,9]. The elementary excitations thus consist of
Ising–like excitations from the ferromagnetic ground state of the σ variables. In addition,
relative to any such Ising state there are spin–wave excitations. In true thermodynamic
equilibrium these latter excitations would dominate the low–temperature thermodynam-
ics. However, it is not entirely clear that it would be easy to establish equilibrium. We
note that the energy barrier between different σ configurations involves the energy of
order S in Eq. (77), whereas the difference between the different metastable minima (for
different σ configurations) is, by Eqs. (77) and (82), of order 1. In the large S limit, one
could easily envision very slow equilibration.

5. Conclusion

In this paper we briefly review the phenomenon order by disorder in frustrated quan-
tum magnetic systems. We may summarize our conclusions as follows.

• It is shown that a ground state degeneracy arises as the system is unable to si-
multaneously satisfy the minimum energy condition for all bonds in the system;
phenomenon known as “frustration”. Depending on the symmetry of the system,
this extra degeneracy can develop finite, infinite (but not macroscopic) and even
macroscopic (as in kagomé AF) number of zero energy modes in spin wave spectrum.

• Quantum disorder (fluctuations) have a special role in frustrated magnetic systems
because they can lift the degeneracy of the ground state manifold and make the
system more ordered. Particularly we showed that the infinite degeneracy of the
ground state manifold of various systems such as FCC and BCT antiferromagnets
is partially removed by collinear ordering at relative order J ′2/(J2S). The effective
interaction between the decoupled (in the mean field sense) sublattices is of the
form

EZPE ≈ −
(
J ′2S

J

)[
1 + cos(θ)2

]
It is shown that high order quantum fluctuations removes the remaining Ising-type
degeneracy of the ground state manifold.

• In order to include the effect of quantum fluctuations on the spin–wave modes, we
performed an interacting spin–wave calculations using the standard Hartree decou-
pling of the fourth order interaction terms described by Dyson-Malev transforma-
tion to boson. Quantum fluctuations are found to modify the spin–wave spectrum
significantly at small q–vectors. Particularly at q = 0 zero energy modes split into
a nonzero modes and one zero energy mode (Goldstone mode). Next we showed
that this gap and the modified spin–wave spectrum due to quantum fluctuations
can be very well modeled (only at small wavevector) by an effective biquadratic
interactions of the form:

∆Eeff
Q = −1

2
Q
∑
iα,jβ

(Sα(i) · Sβ(j))2/S3
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where Q is estimated to be

Q = −J
′

2

(
[〈a+

α (i)a+
β (j)〉]ap + [〈a+

α (i)aβ(j)〉]p
)
,

where < ... > indicates a ground–state expectation value.

• We point out that above equation does not form a basis for a consistent calculation
of the temperature dependence of the gap because of the reasons discussed in the
text. The temperature dependence can be used to demonstrate whether or not the
gap is due to quantum fluctuations.[18, 19] It is an open question to show definitively
that this temperature dependence is nearly the same as that of the order parameter.

• Finally we consider the AF spins on a kagomé lattice, which forms a system with
macroscopic phason modes. It is shown that the degeneracy in the ground state
manifold of a classical Heisenberg antiferromagnet on a kagomé lattice is also re-
moved by quantum fluctuations. In the classical ground state one can assign an
azimuthal angle φ to each independent hexagon of coplanar spins. Quantum fluctu-
ations to lowest order in 1/S (i. e. involving zero–point energy of non–interacting
spin waves) partially resolve this degeneracy, so that at this order the ground state
has all hexagons coplanar, i. e. φi − φj = 0,modπ, where φi is the azimuthal angle
of hexagon i. This Ising gauge symmetry is only removed at second order in 1/S.
We discuss that including spin–wave interactions to first order in 1/S causes the
local modes which classically have zero energy to have a nonzero energy, which is
self–consistently calculated to be of order S2/3.
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