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Abstract

Renormalization-group theory is developed to yield all local microscopic ther-
modynamic densities in heterogeneous systems. Local energy densities and local
magnetizations are thus obtained for random-bond systems, random-field systems,
and spin-glasses, in two and three dimensions. Different order-disorder mechanisms
in these diverse systems, such as chaotic ordering and domain-wall melting, become
quantitatively evident.

1. Introduction

From its inception, the renormalization-group method [1] was marked by a series of
successes in statistical mechanics, from the calculation of critical exponents [1], to the de-
termination of entire thermodynamic functions at or away from criticality [2], first-order
phase transitions [3], and global phase diagrams [4]. The compounded difficulty presented
by heterogeneous systems, namely systems with quenched (frozen-in) disorder, was also
surmounted, yielding critical properties and phase diagrams [5–9]. Thermodynamic den-
sities of heterogeneous systems were also obtained [6,8,9], but as averages across the entire
system under study.

In fact, much more information of physical relevance is contained in the statistical me-
chanical formulation of heterogeneous systems and can be accessed [10] by renormalization-
group theory, as demonstrated below. We present here a renormalization-group calcula-
tion of the local thermodynamic densities, namely local energy densities and local mag-
netizations, in heterogeneous systems. Since it yields the detailed equilibrium statistical
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mechanics at the most microscopic scale, we call our method “the renormalization-group
microscope”. The method is widely applicable: In this paper, we present the microscopic
thermodynamic densities for (1) random-bond systems, (2) random-field systems, and
(3) spin-glass systems, obtaining the qualitatively different order-disorder mechanisms of
each system [10].

2. The Renormalization-Group Method

2.1. General Approach

The renormalization-group method [1] is the iterative solution of a statistical me-
chanics problem. The latter is defined, for example, by local (spin) degrees of freedom
{si} arrayed on a lattice of sites labeled by i. These degrees of freedom are coupled by
interactions of strengths Jij ,Hi,..., as seen in the Hamiltonian

−βH({si}) =
∑
<ij>

Jijsisj +
∑
i

Hisi +
∑
i

Gi + .... (1)

The last shown term is an additive constant, whose value does not affect the physical
properties of the system; however, this term is needed in the renormalization-group for-
malism, as it accumulates physical information of the finer scales, under the rescaling
transformations of the method. In Eq.(1), < ij > indicates summation over nearest-
neighbor pairs of sites and, at each site i, the degree of freedom si can take the values
of ±1. All of the equilibrium properties of the system are contained within the partition
function

Z =
∑
{si}

e−βH({si}), (2)

where the sum is over all possible states of the local degrees of freedom, the spins {si}.
The renormalization-group method prescribes that the sum in Eq.(2) be carried out

only over a subset of the local degrees of freedom, so chosen that their evaluation consti-
tutes a scale change, without a structure change, in the system. The remaining summand
can be cast as an exponentiated Hamiltonian, as in Eq.(1), but with changed (renormal-
ized) values of the interaction strengths:

subset∑
{si}

e−βH({si}) = e−β
′H′({si}remaining), (3)

where the prime indicates the presence of renormalized interactions. This transformation
is recycled ad infinitum, and the entire statistical mechanics is thereby done.

2.2. Homogeneous Systems

In the case of homogeneous systems, the interactions are uniform across the system:
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Jij = J , etc. The renormalized interaction strengths are determined by the unrenormal-
ized interaction strengths, via the so-called recursion relations,

→
K
′
=
→
R (
→
K), (4)

where
→
K ≡ (J,H,G,...) and

→
R (
→
K) is a function deduced from the partial sum in Eq.(3).

Repeated applications of Eq.(4) generate the renormalization-group flows in the space of
→
K . Under these flows, each distinct region of the phase diagram (i.e., each phase and
each type of phase transition point) is attracted to its own fixed point. Thus, the global
connectivity of the renormalization-group flows yields immediately the phase diagram
in the variables in

→
K . Linear analysis at the fixed points of the second-order phase

transitions yields the critical exponents.
The interaction strengths

→
K are also referred to as the “thermodynamic fields”. Con-

jugate to them are the “thermodynamic densities”,

→
D =

1
N

∂

∂
→
K

lnZ(
→
K) = (q < sisj >,< si >, 1, ...), (5)

where N is the number of lattice sites and q is the number of nearest-neighbor bonds per
lattice site. A renormalization-group recursion relation for the densities is obtained with
the chain rule,

→
D = b−d

→
D
′
·∂
→
K
′

∂
→
K
, (6)

where b is the length scale change factor and d is the spatial dimensionality. Repeated
applications of Eq.(6) connect the densities between the initial point and the terminal
point of a trajectory. Densities at the latter point are readily calculated, thus yielding
the densities of any point in

→
K-space by initiation of a trajectory [11].

2.3. Heterogeneous Systems

When interaction strengths vary across the system, e.g., Jij 6= Jkl and/or Hi 6= Hj

in the Hamiltonian in Eq.(1), a heterogeneous system obtains. Ordering (of {si}) in the
presence of frozen-in disorder (of {Jij} and/or {Hi},...) is investigated [5]. The statistical
mechanics problem acquires a compounded difficulty, but also the rewards of qualitatively
new physical phenomena. Importantly different situations result from different types of
frozen-in disorder, as seen below.

The phase diagram of a system with frozen-in (quenched) disorder is calculated, in
renormalization-group theory, by the recursion, under scale change, of the distribution
function P ({

→
Kij }) of interaction strengths, as seen in several previous studies [6-9]. In

the present work [10], we demonstrate that the most detailed microscopic description of
local densities can be calculated by renormalization-group theory, revealing qualitatively
different physical phenomena.
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The local heterogeneous interactions
→
Kij= (Jij,Hi,Hj,Gij,...) and the local heteroge-

neous densities
→
D= (< sisj >,< si >,< sj >,1,...) are related by the conjugate relation

→
Dij =

∂ lnZ

∂
→
Kij

. (7)

The recursion relation of the local densities is again obtained with the chain rule,

→
Dij =

∑
<i′j′>

→
D
′
i′j′ ·

∂
→
K
′
i′j′

∂
→
Kij

, (8)

where
→
K
′
i′j′ and

→
Kij are connected by a local recursion relation for interactions,

→
K
′
i′j′=

→
R ({

→
Kij}), (9)

deduced from the partial sum of the partition function. The interaction recursion rela-

tion being local in nature, in Eq.(9), for a given i′j′,
→
K
′
i′j′ effectively depends on the

unrenormalized interactions
→
Kij from a limited range in ij. Thus, in Eq.(8), for a given

ij, a limited number of summand terms is non-negligible.
A system as large as desired can be reduced to a very small system, by repeated

renormalization-group transformations. After each renormalization-group transforma-
tion, the content of Eq.(8) is accumulated by matrix multiplication, the product matrix
relating the local densities of the original system and those of the repeatedly renormalized
system. The consecutive applications of Eq.(9) track the renormalized local interactions.
These interactions, at each renormalization-group step, determine the matrix in Eq.(8),
which gets multiplied as just explained. Finally, the renormalized interactions of the
very small system are used in the determination of its local densities, which, through the
product matrix, determine all of the local microscopic densities of the original system.
The inner workings of the renormalization-group microscope are hereby fully specified.

2.4. Calculation

As seen above, the renormalization-group microscope is perfectly general: it can use
any local (therefore, position-space) renormalization-group transformation. In the present
calculations, we have used the Migdal-Kadanoff procedure [12,13], due to its proven
efficacy. We study Hamiltonians with the terms exhibited in Eq.(1), on square (d = 2)
and cubic (d = 3) lattices. As a preliminary, given a spatial array of local interactions of
different values, an exact rewriting of the Hamiltonian of Eq.(1) is

−βH({si}) =
∑
<ij>

(Jijsisj + hisi + hjsj +Gij). (10)

The renormalization-group transformation is illustrated in Fig.1. In the first (approx-
imate) step of the transformation, all the bonds [terms in parentheses in Eq.(10)] in a
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group of bd−b bonds are “moved” onto the b bonds in their midst. For heterogeneous sys-
tems, each moved interaction strength is added to the corresponding interaction strength
of the closest unmoved neighbor or is equally shared for the case of several closest un-
moved neighbors, this being done in one lattice direction at a time. In the second (exact)
step of the transformation, the partition-function sums over the doubly coordinated sites
are performed, resulting in renormalized interactions between the remaining sites. Thus,
the local recursion relation of Eq.(9) takes the form, for b=2,

J ′i′k′ = 1
4 ln[R(+,+)R(−,−)/R(+,−)R(−,+)],

h′i′ = 1
4 ln[R(+,+)R(+,−)/R(−,−)R(−,+)],

h′k′ = 1
4 ln[R(−,+)R(+,+)/R(+,−)R(−,−)],

G′i′k′ = 1
4 ln[R(+,+)R(+,−)R(−,−)R(−,+)] + G̃ij + G̃jk,

with R(si, sk) =
∑±1

sj
exp(J̃ijsisj + h̃isi + h̃jsj + J̃jksjsk + h̃jsj + h̃ksk),

(11)

where J̃ij, etc., are the bond-moved interaction strengths. For example, in d = 2 and for
b = 2,

J̃ij = Jij + (Jkl + Jmn)/2,
h̃i = hi + (hk + hm)/2,
h̃j = hj + (hl + hn)/2,
G̃ij = Gij + (Gkl + Gmn)/2,

(12)

where < kl > and < mn > are the nearest-neighbor parallels on each side of < ij >. In
d = 3 and for b = 2,

J̃ij = Jij +
1
2

∑
<kl>1

Jkl +
1
4

∑
<pr>2

Jpr , (13)

and similarly for the other interactions, where the first sum is over the four nearest-
neighbor parallels to < ij > and the second sum is over the four next-nearest-neighbor
parallels to < ij >.

Figure 1. The Migdal-Kadanof procedure is extended to heterogeneous systems and used in
the implementation of the renormalization-group microscope. Note that any other position-space
renormalization-group transformation could be used in this implementation.
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3. Results: Local Energy Densities

3.1. Quenched Random-Bond System

The quenched random-bond system is obtained from the general Hamiltonian of Eq.(1)
by studying a system with

Hi = 0 and Jij = Ĵij/T (14)

with the coupling strengths chosen across the system according to the quenched Gaussian
distribution

P (Ĵij) = (2πσ2)−1/2 exp[(Ĵij − Ĵ)2/2σ2]. (15)

The results for all local energy densities < sisj >, where i and j are nearest neighbors,
are shown in Fig.2(a), at various temperatures T , for d = 2. It is seen that this hetero-
geneous system gains local energy rather uniformly across the system. The calculation
also shows that local energy gain (equivalently, nearest-neighbor decorrelation) occurs,
as temperature is raised, more readily along the edges of the system, as expected since
these regions have weaker connectivity.

3.2. Spin-Glass System

The coupling-strength distribution used in the preceding section, Eq.(15), essentially
excludes antiferromagnetic bonds, for the study of quenched randomness without the
effects of frustration [14]. By contrast, here Eqs.(14) are used with the symmetric distri-
bution

P (Ĵij) = [δ(Ĵij + Ĵ) + δ(Ĵij − Ĵ)]/2. (16)

This randomly assigns, across the system, ferromagnetic (+Ĵ > 0) and antiferromag-
netic (−Ĵ) interactions with equal probability and a spin-glass system [15] is obtained.
The results for all local energy densities | < sisj > | are shown in Fig.3(a), at various
temperatures T , for d = 2. The contrast to the quenched random-bond system with
no frustration (Sec.3.1) is striking. Firstly, the spin-glass gains local energy much more
readily as temperature is increased. Even more striking is the non-uniformity of the local
energy distribution in the spin-glass system. The calculation shows that local centers
of frustration remain energetic to the lowest temperatures; as temperature is increased,
locally energetic regions emanate from the centers of frustration; these regions connect,
in turn leaving isolated localities of low energy at intermediate temperatures.

4. Results: Local Magnetizations

4.1. Quenched Random-Bond System

Calculation of local magnetizations < si > (equivalently, local order parameters)
yields insight into the contrasting order-disorder mechanisms in heterogeneous systems.
The results for all local magnetizations of the quenched random-bond system [Eqs.
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Figure 2. (a) The calculated array of local energy densities, i.e., nearest-neighbor correlations
< sisj >, for a random-bond system in d = 2, at increasing temperatures. This system is
obtained from Eq.(1) by setting Hi = 0 and randomly choosing Ĵij from a Gaussian distribution
of mean Ĵ = 1 and standard deviation σ = 0.24; these different bond strengths are represented
in the figure by the thicknesses of the bonds. The values of < sisj > vary from 1 (black) for
complete correlation, to 0.5 (grey) for intermediate correlation, to 0 (white) for no correlation. (b)
The calculated array of local magnetizations < si > for this random-bond system, at increasing
temperatures. The values of < si > vary from +1 (black) for up-alignment, to 0 (grey) for no-
alignment, to –1 (white) for down-alignment. A nucleation field of Ĥi = 0.02 has been applied
to the boundary spins.
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Figure 3. (a) The calculated array of local energy densities, i.e., nearest-neighbor correlations
| < sisj > |, for a spin-glass system in d = 2, at increasing temperatures. This system is
obtained from Eq.(1) by setting Hi = 0 and randomly choosing Ĵij as +1 or –1, respectively
represented by thick or thin bonds in the figure. The values of | < sisj > | vary from 1 (black) for
complete correlation, to 0.5 (grey) for intermediate correlation, to 0 (white) for no correlation.
(b) The calculated array of local magnetizations < si > for this spin-glass system, at increasing
temperatures. The values of < si > vary from +1 (black) for up-alignment, to 0 (grey) for
no-alignment, to –1 (white) for down-alignment. A nucleation field of Ĥi = −0.004 has been
applied to the boundary spins.
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(14),(15)] are shown in Fig. 2(b), at various temperatures T , for d = 2. Consistently with
the picture from the local energy densities, rather uniform disorder across the system,
with readier disordering along the edges, is observed.

4.2. Spin-Glass System

The contrast in spin-glass systems is again dramatic. The results for all local mag-
netizations of the spin-glass system [Eqs. (14),(16)] are shown in Fig.3(b), at various
temperatures T , for d = 2. In two dimensions, the spin-glass system does not have true
long-range order, but the low-temperature results here are an indication of the order
that sets in as dimensionality is increased, between d = 2 and 3. Note that the order-
parameter calculations are achieved with a small symmetry-breaking field along the edges
of the system (see the figure captions), as dictated by rigorous statistical mechanics.

The results of Fig. 3(b) show that a non-contiguous subset of the spins order, i.e.,
become pinned in one or the other direction, as temperature is lowered. In-between these,
spins are unpinned. This ordering picture had been deduced when renormalization-group
transformations that became chaotic were first observed in frustrated systems [16].

4.3. Quenched Random-Field System

The quenched random-field system is obtained from the general Hamiltonian of Eq.(1)
by studying a system with

Jij = Ĵ/T (17)

with the field strengths Hi chosen across the system according to the distribution

P (Hi) = [δ(Hi + H) + δ(Hi −H)]/2. (18)

The results for the local magnetizations were obtained for the entirety of a d = 3 system.
They are exhibited for one plane within this d = 3 system in Fig.4(b), at various temper-
atures T . Yet another dramatically different order-disorder mechanism is observed. The
spins, all aligned at low temperatures, disorder as temperature is increased by the forma-
tion of opposite, compact, contiguous domains. This is the Imry-Ma mechanism [17], valid
at strong coupling. The calculation here reflects the fact that, under renormalization-
group transformations, the intermediate temperatures where the phase transition occurs
get mapped onto the neighborhood of a zero-temperature, i.e., strong-coupling fixed point.
Fig.4(a) shows that anticorrelated spin neighbors occur in the regions intervening between
the domains.
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Figure 4. (a) The calculated array of local energy densities, i.e., nearest-neighbor correlations

< sisj >, for a random-field system in d = 3, at increasing temperatures. This system is

obtained from Eq.(1) by setting Ĵij = 1 and randomly choosing Hi as +2.73 or –2.73. The

values of < sisj > vary from +1 (black) for complete correlation, to 0 (grey) for no correlation,

to –1 (white) for complete anticorrelation. (b) The calculated array of local magnetization for

this random-field system, at increasing temperatures. The values of < si > vary from +1 (black)

for up-alignment, to 0 (grey) for no-alignment, to –1 (white) for down-alignment. In both (a)

and (b), values for the same cross-section of the three-dimensional system is shown. In (b), the

sites with Hi +2.73 or –2.73 are respectively shown by � or �.
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It is thus seen that detailed microscopic information on thermodynamic densities and
physical mechanisms can be obtained from the renormalization-group microscope.
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