Lets Rewrite PCA

- We have that $W_{k}=\sum_{s=1}^{n} \alpha_{k}[s] \mathbf{x}_{s}$ and that $\alpha_{k}[t]=\frac{1}{\lambda_{k} n}\left(\mathbf{x}_{t}^{\top} W_{k}\right)$.
- Hence:

$$
\alpha_{k}[t]=\frac{1}{\lambda_{k} n}\left(\mathbf{x}_{t}^{\top}\left(\sum_{s=1}^{n} \alpha_{k}[s] \mathbf{x}_{s}\right)\right)=\frac{1}{\lambda_{k} n} \sum_{s=1}^{n} \alpha_{k}[s] \mathbf{x}_{t}^{\top} \mathbf{x}_{s}
$$

- Let \tilde{K} be a matrix such that $\tilde{K}_{s, t}=\mathbf{x}_{t}^{\top} \mathbf{x}_{s}$. Hence, $\alpha_{k}[t]=\frac{1}{\lambda_{k} h} \alpha_{k}^{\top} \tilde{K}_{t}$ and

$$
\alpha_{k}=\frac{1}{\lambda_{k} \eta} \tilde{K} \alpha_{k}
$$

where \tilde{K}_{t} is the t^{\prime} th column of \tilde{K}.

- Hence α_{k} is in the direction of eigen vector of \tilde{K}

