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Abstract

The orbital period changes in some chromospherically active close binaries have
been interpreted as a consequence of magnetic activity. At least in two active close
binaries a possible relationship between the orbital period modulation and activity
cycle was suggested. The existence of a third companion in these binaries has also
been proposed. The light-time effect which arises from orbiting around a third-
body has been subtracted from all the O-C values and a cyclic change of the orbital
period has been obtained. These cyclic changes seem to be connected with the total
brightness variations at least in two samples, namely, V471 Tau and RT Lac. The
lenght of the orbital period modulations and also activity cycle in these samples are
nearly half that of the Sun.

1. Introduction

Variable stars reveal themselves with periodic or cyclic light variations. Among these
stars the eclipsing variables are known to be the excellent laboratories for studying a
wide variety of processes in stellar astrophysics. These stars present some information
about tidal distortion, mass transfer or mass loss, angular momentum transfer or loss,
magnetic activity and stellar evolution. The existence of sun-like active stars in close
binaries have been revealed by Hall [1]. These binaries which contain at least a chro-
mospherically active companion have been the subject of many investigations following
their discovery. The existence of dark starspots is established in a wide variety of cool
stars [2]. These spots cause periodic dimming of the star’s light as it rotates. Doppler
imaging technique developed by Vogt et al. [3] has been used to estimate the sizes and
positions of spots on stars. The systems which have solar-like companion were named
as RS Canum Venaticorum systems. They are characterized by solar-like activity. The
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signatures of this activity were observed not only in visible light but also X-ray, UV and
radio spectral domains [4].

We assume that a spot on one of the chromospherically active stars appears at some
latitude and stays there for the duration of its lifetime [5]. If the spot is located on the
higher latitude than the co-rotation latitude it will reappear later than expected from the
star’s mean rotation due to the differential rotation. Therefore a spot’s visibility phase
would increase or decrease with time. The dimming of the total light due to the spot
or spots would migrate through the light curve. Therefore we can measure the phases
of spots with respect to the orbital period of a close binary system or a mean rotational
period for a single star. The phases of the spots and light loss at these phases may present
us some clues about the properties of the spots; namely, latitude, longtitude, radius and
temperature with respect to the photosphere. To evaluate the spot parameters some
methods were developed by Eaton and Hall [6], Budding and Zeilik [7], Kang and Wilson
[8], Eaton et al. [9] and Henry et al. [10].

As it is known an interesting phenomenon in astronomy is the small but definite
changes in orbital periods, rotation periods and pulsating periods. These changes are the
clues of some changes in the physical conditions inside the stars. The types of period
changes were summarized by Hall [11]. The timing of eclipses in close binaries can
be obtained accurately with a few seconds deviations. When the differences between
the observed and assumed ephemeris are obtained, over many orbits the orbital period
changes of the order of 10−5 − 10−6 can be determined. Long term observations of close
binaries have shown that the orbital period changes are common property in most of
these binaries. Some systems show alternating period changes, i.e., increases followed by
decreases. These period changes of alternating sign have been called as orbital period
modulations which are common in RS CVn systems.

The aim of this study is to summarize the mechanisms of orbital period changes and
to discuss the orbital period modulation studies made for close binaries in which at least
one of the component stars has magnetic activity.

2. Types of Period Changes

We follow the classification schema made by Hall [11] for the orbital period changes.

2.1. Monotonic Period Changes

a) Mass Transfer: It is known that Roche lobe filling component in semi-detached bina-
ries is transferring mass to its companion. We assume that the total mass and angular
momentum are conserved during the mass transfer. Under these conditions it is expected
that the orbital period will increase if the loser is less massive but will decrease if the
loser is more massive component.
b) Mass Loss in a Wind or Shell: If one of the component in a close binary is too massive
and is losing mass isotropically one would expect monotonic orbital period change. The
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sign of the change will depend on the mode of mass loss. If the out-flowing mass is con-
strained by magnetic fields the orbital period will decrease. On the other hand magnetic
braking is responsible for an increasing rotation period.
c) Gravitational Radiation: For the systems which include massive or a collapsed com-
panion gravitational radiation causes loss of angular momentum. In these systems the
orbital period will decrease monotonically.
d) Galactic Acceleration: The eclipsing binaries revolve around the center of the Galaxy
in an elliptic orbit. Therefore the eclipse timings will show monotonic period changes.
The sign of these changes will depend on the location of the binary in the Galaxy with
respect to the Sun.

2.2. Periodic Period Changes

a) Apsidal Motion: It is known for a long time that the rotation of the line connecting
the star’s center causes a sinusoidal changes in both timings for primary and secondary
eclipses. However, the displacements of primary and secondary eclipse are in opposite
direction.
b) Third Body: If a star is physically bounded to another object and revolves around the
center of mass we expect a time delay or advance in the periodic signals due to the finite
velocity of the light. If the object emitting periodic light signals is an eclipsing binary
the displacements of primary and secondary eclipses are in phase.

3. Cyclic Period Changes

Many eclipsing binaries which contain at least one late-type convective star show orbital
period changes in both directions in a few decades. Since the components of these binaries
are well inside their corresponding Roche lobes, and have similar masses with that of the
Sun ,mass transfer and mass loss could not be the cause of these period changes. The
orbits of these binaries are generally circular and displacements of primary and secondary
eclipses are in phase, i.e., do not vary 180◦ out of phase as required for apsidal rotation.
In the case of orbit around a third body the inferred mass of third body was too large
that it will be visible in the composite spectrum and some changes in the velocity of the
center of mass of the binary should be detected. Due to the lack of such evidence the
third body orbit hypothesis was excluded. In addition third body and apsidal motion
both require that period modulations be strictly periodic, but the observations show that
this is not the case.

The idea for explaining the alternating orbital period variations in chromospherically
active binaries has been suggested by Oliver and Rucinski [12] and later on by Hall and
Kreiner [13]. In these suggestions a change in the radius of one star causes a change in
rotation period. This change will be transformed to the orbit then the orbital period
will change. A theory to explain these period changes as a consequences of possible
magnetic cycle was first suggested by Matese and Whitmire [14]. They pursued the
radius-change idea but they were not sure about the nature of radius changes. Later on
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Van Buren and Young [15] suggested cyclical changes in one star’s magnetic field would
cause cyclical changes in the radius. A similar mechanism has been suggested by Van’t
Veer [16] for explaining the alternating period changes in W UMa and RS CVn binaries.
He proposed that redistribution of the mass in the radiative core of one or both stars
produces the changes in moment of inertia. Applegate and Patterson [17] realized that
the orbital period would be changed at constant orbital angular momentum if the radial
part of the gravitational acceleration varied.They have taken and examined the problem
of time-variable magnetic field, angular momentum, rotation period and orbital period
together.

The investigators have all assumed that magnetic field deforms the stars by distorting
it away from the fluid equilibrium shape. On the other hand Marsh and Pringle [18]
suggested that the energy required to make the deformation was larger than the luminosity
of the star produced. Applegate [19] agrees with this idea and distortion away from
hydrostatic equilibrium is ruled out. He proposes a mechanism to produce the period
changes in active stars invokes the magnetic field to cause transitions between states of
fluid equilibrium. This mechanism depends on the changes in the quadrupole moment
which determines the angular momentum distribution within the star.

The most simple example of the distortion is the expansion and contraction of the
active star as magnetic pressure changes. This is a very similar behaviour to that of pul-
sation in some stars. On the other hand the example of the transition may be a variable
rotational oblateness. This variation in the oblateness is produced by the redistribu-
tion of angular momentum by a magnetic torque. When the magnetic field is vanished
no deformations take place in the star’s hydrostatic equilibrium; the shape of the star
stops changing [19]. Applegate follows the below formulae to obtain the orbital period
modulation in active close binaries.

We assume that in a close binary the mass and radius of active companion are M and
R. The separation between the components is a and they revolve in circular orbits around
the center of mass. The gravitational potantial outside the active star is,

φ(r) = −GM
r
− 3

2
GQ

r3
(1)

where Q is the gravitational quadrupole moment. We can obtain the quadrupole moment
of the star by the formula given by Kopal [20, 21],

Q =
2
9
k2

Ω2
eR

5

G
(2)

where k2 is the apsidal motion constant which defines the density distribution within the
star. The value of this constant depends on the physical parameters of the star and can
be obtained from the tables given by Claret [22]. The parameter Ωe is effective angular
velocity and is related to centrifugal and magnetic tension forces:

Ω2
e = Ω2 − B2

4πρs2
(3)
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where s is the modulus of the vector distance from the rotation axis. On the other hand,
the orbital period depends on the relative velocity on the orbit as P = 2πr

ν . The angular
momentum is J = µνa, where µ is the reduced mass. The velocity on the circular orbit is,
ν2 = rg = GMT

r
where MT is the total mass of the system. Therefore the relative velocity

of a circular orbit ν2 = rdφ
dr is given by,

ν2 =
GMT

r
[1 +

9
2

Q

Mr2
] (4)

If we differantiate this equation we obtain,

2
∆ν
ν

= −∆r
r

+
9
2

∆Q
Mr2

(5)

On the other hand, if we assume that the angular momentum is conserved,

∆P
P

= −2
∆ν
ν
,

∆r
r

=
∆ν
ν

(6)

Combining these equations with equation (5) the following relation is obtained,

∆P
P

= −9
R2

a2

∆Q
MR2

(7)

The first equation indicates that when the active star is more oblate, ∆Q > 0 gravitational
field in the equatorial plane of the star will be stronger as it is clear from Eq. (1). To
balance the gravity the centrifugal acceleration ν2

r should increase. As we assumed the
angular momentum fixed, then, νr should be constant. Therefore ν should increase while
r decreases. The orbital period should decrease because the star moves faster. As it is
seen the physics of the orbital period change due to the variation in the active star’s
quadrupole moment is very simple.

Applegate defines the transition as deformations in which the magnetic field causes the
star to change from one fluid hydrostatic configuration to another. As we stated earlier the
quadrupole moment of a rotating star is related to the distribution of angular momentum
within the star. The quadrupole moment is determined by the angular momentum carried
by the outer layers of the star. Because the moment of inertia is proportional to r2 and the
centrifugal acceleration increases towards these outer layers. Therefore the outer layers
will turn faster than inside and they become more oblate. Whereas the inner zone will
rotate slowly and it become less oblate. This different oblateness in a star will increase
the quadrupole moment. Therefore the derivative will be positive.

Applegate takes a thin shell of mass, the moment of inertia of shell as Is = 2
3MsR

2.
Then, the derivative is

dQ

dJ
=

1
3

ΩR3

GM
(8)

Combining this equation with those of Eq.(7) one obtains,

325
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∆J = −GM
2

R

a2

R2

∆P
6π

(9)

This equation indicates that the orbital period decreases when the star’s oblateness is
increased. The energy required to transfer the angular momentum will be

∆E = Ωdr∆J +
∆J2

2Ie
(10)

where Ωdr = Ωs − Ω∗ is the angular velocity of differential rotation, Ie = IsI∗
Is+I∗

is the
effective moment of inertia. The quantities include asterisk correspond to the inner part
of the star. Applegate takes the mass of the shell about 0.1 of the total mass and therefore
Is ≈ I∗ and 2Ie ≈ Is. If the angular momentum transferred to the outer shell is an amount
of ∆J, this shell will spin up by an angular velocity ∆Ω = ∆J

Is
which is given by,

Ms

M

∆Ω
Ω

=
GM

2R3

a2

R2

P 2

4π2

∆P
P

(11)

If the energy requirement is supplied by the nuclear luminosity of the star which will be
variable with the RMS luminosity variation given by

∆LRMS = π
∆E
Pmod

(12)

where Pmod is the period of orbital modulation. The RMS torque required to periodically
exchange ∆J between the outer shell and the inner part of the star is

N = π
∆J
Pmod

=
π

3
GM2

R

a2

r2

∆P
Pmod

(13)

Assuming this torque is supplied by a subsurface magnetic field it will be related to the
magnetic field strength as,

N ∼ B2

4π
(4πR2)∆R ∼ 0.1B2R3 (14)

where ∆R = 0.1R is assumed. Then, we find the magnitude of the magnetic field as,

B2 ∼ 10
GM2

R4

a2

R2

∆P
Pmod

(15)

If there is an observed orbital period modulation as cyclic character the amplitude of
this modulation and the amplitude of the oscillation in the O-C diagram are related by

∆P
P

= 2π
O −C
Pmod

(16)

where Pmod is the modulation period. If we assume that active stars behave like the
sun the orbital period modulation is expected to be fairly regular with a period of Pmod.
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Table 1. The active binaries which indicate cyclic period changes.

Parameter Algol SS Cam SV Cam V471 Tau RS CVn
Pmod (yr) 32 55 82 40 48

Semiamp. of O − C (days) 0.03 0.1 0.015 0.0005 0.07
Porb (days) 2.87 4.8 0.53 0.52 4.8

∆P/P (×105) 1.6 3 0.3 0.2 2
∆P (s) 4 13 0.14 0.09 8.3

∆J (×10−48) 2.38 13.2 0.2 0.2 24
∆L (L�) 1.4 2.3 0.07 0.12 9.7
B (kG) 5.5 3.5 9 11 13

However we should bear in mind that the orbital period modulation should not be strictly
periodic. The examples of the application are given in Table 1.

The model proposed by Applegate takes the orbital period modulations in the active
close binaries as a signature of stellar magnetic activity. The luminosity variation should
accompany to orbital period modulation with the same period. The relative phases
of these variation are very important. Orbital period minimum should coincide with
maximum quadrupole moment, i.e., outside spinning of the active star is the fastest.
Therefore maximum luminosity should coincide with an O−C curve minimum if the star’s
outside spins faster than its inside but should coincide with an O−C curve maximum if
the outside spins slower than inside.

The first test to the Applegate’s model was the application to the CG Cygni by Hall
[23]. He finds that the mean brightness outside eclipse and the period vary with the same
cycle length, ∼ 50 years. The orbital period increase occurs at maximum brightness
reached by the system. Therefore the star’s outside spins faster than its inside.

İbanoǧlu et al. [24] studied throughly the long-term luminosity variations and period
changes in the chromospherically active binary system V471 Tau. They have collected
the data over an interval of 23 years. The mean brightness of the white dwarf-red dwarf
eclipsing binary has regularly been increased about 0.2 mag in blue and yellow colours
(See Fig. 1). The linear increament was extracted from the observed mean brightness
and a cyclic change in the total luminosity of the system has been found as it is shown in
Fig. 2. The averege period of these variations is about six years. On the other hand, the
analysis of 154 timings of mid-eclipse has been made with assumption of the light-time
effect. It means that the system revolves around a third component. The amplitude of
the O-C curve is about 100 s (see Fig. 3). The analysis gave that the eclipsing pair orbits
around a third-body with a period of 24.6 yr. The eccentricity of this orbit is about 0.614
and semi-major axis is about 3.84×107 km. The time delay due to orbiting around a third
body was substracted from the O-C curve and a cyclic variation has been obtained and
is shown in Fig. 4. The average amplitude of this variation is about 20 s with an average
period of 5 years. The changes in the orbital period seem to be related to the system’s
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Figure 1. The variations in the mean brightness of V471 Tau in blue and yellow colours.

mean brightness variations. The closeness of the periods for the luminosity variations and
the orbital period modulation has been taken as the evidence which support the theory
developed by Applegate. The maximum of the O-C curve coincides with the maximum
luminosity. This suggests that the outside spin of the chromospherically active companion
should be slower than that of inside.

Another active system which has been observed for a long time is RT Lac. The system
has been observing since 1978 at the Ege University Observatory. these observation show
that the mean brightness of the system varies with an amplitude of about 0.16 mag in
blue and 0.11 mag in yellow light (see Fig. 5). In the time interval between 1978 and
1992 the mean color of the system was also varied about 0.06 mag. All timings published
so far have been collected and analysed by Keskin et al. [25]. Due to the sine-like changes
of the O-C values as it is seen in Fig. 6. They have interpreted the O-C changes as the
consequence of a light-time effect. The analysis indicate that the eclipsing pair revolves
around a third body with a period of 80.71 yr. The separation between the eclipsing
pair and the third body has been calculated to be approximately 176 times that of the
separation between the eclipsing components. However, the lower limit estimated for the
mass of the third body is about 1.77 solar masses. This value is larger than that of the
massive primary component of the eclipsing pair. When the light-time effect has been
subtracted from all the photoelectric times of minima, an existence of cyclic variation in
the orbital period revealed itself (see Fig. 7). The minimum of the O-C curve coincides
with the maximum light of the system. The period and the mean brightness of the
system seem to vary with the same cycle lenght of about 12 yr. Since the light maximum
coincides with the O-C curve’s minimum, the outside spin of the more massive, active
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Figure 2. The cyclic changes in the mean brightness of V471 Tau.
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Figure 3. The O-C curve for V471 Tau. The solid line indicates the computed light time curve.
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Figure 4. The O-C residuals from the third body ephemeris. The cyclic changes are clearly
visible.

Figure 5. The mean luminosity and color variations of RT Lac between 1978-1992.
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İBANOǦLU

Figure 6. The light-time effect for the grouped photographic and for all the photoelectric times
of minima of the system RT Lac.

Figure 7. Deviations of the O-C values from the light-time effect of RT Lac.
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star should be greater than its inside spin according the theory proposed by Applegate.
Recently, Lanza et al. [26] studied activity cycle and the period variations of AR Lac.

They analysed the seasonal light curves of AR Lac covering 1976-1992 with two different
approaches. The Maximum Entropy and Tikhonov principles were employed. Their
analysis indicates that the spots are located on the photospheres of both components.
The analysis could not give a significant evidence for an activity cycle on the primary.
On the other hand, a possible modulation on a time scale of about 17 yr was suggested
for the secondary star. The epochs of primary minima were collected and analysed by the
same authors for the orbital period variations. They found an orbital period modulation
with a period of ∼ 35 yr, which is nearly twice the ∼ 17 yr period for the modulation of
the starspot area on the secondary component.

The mechanism of the orbital period modulations in active close binaries proposed
by Applegate [19] relating the changes of the stellar internal rotation associated with a
magnetic activity cycle with the variation of the gravitational quadrupole moment of the
active component seems to fit at least for a few candidates. Further possible applications
of the relationship between magnetic activity and orbital period modulation will not only
highten the accuracy of the model but also give possibility for understanding the details
of stellar magnetic dynamo.
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