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c© TÜBİTAK (ed. O. Demircan)

Photometric Imaging of Starspots,

Techniques and Reliability

Zeki EKER
King Saud University, College of Science

Department of Astronomy, Riyadh, SAUDI ARABIA

Received 15 September 1998

Abstract

Historical development of the starspot hypothesis and the unsolved problems
associated with it are presented. The ”non–uniqueness” attributed to the spot so-
lutions is a major problem which could still discredit current efforts of starspot
modeling by photometric or spectroscopic data. The basics of the starspot photom-
etry (direct and inverse photometric problem, and the error analysis of the inverse
problem) are presented. Since an analytical formulation exists to compute syn-
thetic light curves from the physical parameters of spots, and recomputing original
parameters analytically from the synthetic curves are also possible, the starspot hy-
pothesis is a consistent physical problem. According to the error analysis presented,
that is, according to the propagated uncertainties from the synthetic curves to the
recomputed parameters, most of the problems of the current modeling techniques
originate from the insufficient accuracy of the observed data.

1. Introduction

The first variable stars discovered are novas and supernovas. Relaying on Chinese records,
variable star history can go back as much as 2000 years [1]. The first variable star which
was not nova or supernova, Omicron Ceti=Mira, was discovered by Johannes Goldsmid =
David Fabricius in 1596. About seventy years later (1667), Ismael Boulliau established a
period of the variability of Omicron Ceti as 333 days and proposed the very first physical
model to explain with a model one hemisphere of the star is darker than the other.
Eclipsing variability, ALGOL was discovered in 1669 by Geminiaro Montanari. However,
during these early centuries (17th, 18th, and 19th) starspots were invoked to explain
the variability of almost all variable stars. Spots were used to explain even novas and
supernovas. Apparently, those models were inspired by sunspots because a live example
of sunspots were known since Galileo(1564-1642).
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However, the uniqueness problem in the starspot hypothesis has been noticed and
spots lost popularity by the turn of the century. Basically, there were two reasons for this.
1) radial velocity variations on the spectra of β Lyra (eclipsing) and δ Cep (cepheid) were
discovered and recorded by Belepolsky (1893). Both systems are considered eclipsing.
But, an alternative explanation with a pulsation mechanism was also available. Actually,
binary-pulsation debate continued until Shapley (1914)[2]. 2) Theoretical arguments
against starspot hypothesis have been published [3] independently by two authors Bruns
(1882) and Russell (1906) which are a) starspots cannot explain every kind of variability;
b) any shape of light curve, unless there is no discontinuity, can be explained by arbitrary
spots. Consequently, starspot hypothesis was abandoned until 1950.

The starspots were rejected in this period because any light curve shape could be
explained by eclipses, radial or non-radial pulsations, obscuring by circumstellar material
or by the combination of similar physical events. Along with the fact that no spotted star
had been found in this period, according to Hall [1], the uniqueness problem, nevertheless,
probably contributed to the starspot’s fall from grace. Similarly, Vogt [4] thinks that the
uniqueness problem is one of the reasons why the starspot hypothesis has been slow to
achieve widespread acceptance. After being abandoned half a century, starspots were
used first time by Kron [5, 6, 7] to explain the out of eclipse variations of the light curves
of AR Lac, RS CVn, RT And and YY Gem. However, works of Kron were ignored for
another 20 years.

First quantitative formulations of photometric imaging were presented in early sev-
enties [8, 9, 10, 11]. Those models were using a single spot with a uniform temperature.
However, a single spot is not sufficient to explain observed asymmetry in the light curves,
so that, two-spot models became standard [12, 13, 14, 15, 16]. During revival of starspot
hypothesis at this time, starspots were included in the models because other kinds of
mechanisms (pulsation, eclipse, absorption by circumstellar material etc.) failed to ex-
plain some irregular light curves.

Kopal (1982) was not happy with this development. He was arguing ”Starspot hy-
pothesis is too simple, unphysical to explain light variability” and insisting ”Unless an
alternative check on their existence and distribution independent of the light curves,
observed light curves cannot produce unique information”[17]. But, Kopal’s voice did
not receive proper attention. Development of models with spots continued not only in
photometry but also in spectroscopy. Using line profiles of neutral metals, the Doppler
imaging technique [18] was introduced by Vogt and Penrod (1983) and maximum entropy
[19] method applied into Doppler imaging by Vogt, Penrod and Hadzes (1987). Saar and
Neff (1990) suggested a technique to observe TiO bands for searching starspots [20]. Re-
cently, Neff, O’Neal and Saar (1995) succeded in determining a unique spot temperature
from the TiO spectra of II Peg [21].

In the classical field of photometry, new techniques like ILOT (Information Limit Op-
timization technique, [22]) and models with the least squares [23, 24, 25] are introduced.
Obviously, the most of the astronomers today do not deny existence of starspots because
numerous models with spots are already published. Despite the fact that many starspot
models were published without serious objections, these publications are not free from
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several basic problems which could still discredit the starspot hypothesis. This presen-
tation aims to study unsolved problems of starspot hypothesis within the scope of the
basics of the starspot photometry.

2. Unsolved problems

The unsolved problems of the starspot hypothesis could be itemized as following:

• Non–uniqueness of spot solutions are frequently announced [1, 4, 12, 17, 19, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. Many modellers from every field
(photometric and spectroscopic) and every technique apparently confirms the non-
uniqueness of spot solutions.

• Indeterminacy of spot latitudes usually complained in the photometric solutions
[10, 12, 14, 15, 22, 23, 27, 33, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53].

• Because (the item above) a spot latitude is a notoriously hard parameter to ascer-
tain, many modellers preferred to use fixed latitudes [10, 15, 23, 39, 41, 50, 52, 53].
Latitude fixing occurs in photometric models only.

• Unphysical modeling [54, 55, 56, 57, 58, 59, 60, 61, 62, 63]. Hall’s group uses
down half of the sine curves to construct a synthetic light curve to fit the observed
data rather than using a synthetic light curve which is computed from real physical
parameters of a spot such as size, shape, location and temperature.

• The distribution of spots on stellar surfaces according to published models are not
realistic [64, 65]. Almost all of the techniques appeared in the literature produce
distributions at which spots are concentrated on the hemisphere with the visible
pole. Therefore, most published models violate solar analogy as well as the physics
associated with the phenomena because there is no physical reason to break dis-
tribution symmetry between the hemispheres which are divided by the equator. It
may be possible to explain why published models show a different distribution char-
acteristics than sunspots. But, explaining the cause of a problem is not a solution.

Except the last item above preceded three items are directly related to the first prob-
lem ”non-uniqueness”. This is because, if a latitude is fixed since it is a notoriously hard
parameter to attain, the fixed latitude imply non-uniqueness since a fixed latitude is a
free choice among the all or a limited range of different latitude values which could all
be possible solutions. On the other hand, the Hall’s group prefers non-physical modeling
because non-uniqueness of spot solutions are generally believed , thus, why bother to
compute synthetic light curves from the physical parameters. This would be meaningless
anyhow.

The uniqueness problem, therefore, is the most important source of negative credits
about the starspot hypothesis. The problem is serious because if infinite number of
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solutions with various distributions exist as many authors claim, there cannot be a true
solution or a solution which can be close to the true solution within the error limits.
Thus, the problem of uniqueness is directly related to believability of the models and to
the trust towards the modeling efforts. Therefore, it can be said that starspot models
does not have a positive credit except to produce synthetic curves within the observed
uncertainties.

The problem of uniqueness, however, is described differently in the published litera-
ture. This fact is clear within the following comments:

”Within the assumption that starspot groups are single and circular in outline,
this approach in fact produce unique results by covering the entire range
of possible combinations of relevant variables. However, solutions are still
nonunique to the extent that other spot shapes (e.g. elongated) or multiple
spot solutions may well exist.” [4]

”Casting the problem in matrix form, IR=D, where I and D are image and
data vectors and R is the transfer matrix between the two, the solution for the
image vector is given by I = DR−1. In practice, this cannot be done. This
is because, R to be invertable, not only must the matrix be square, but also
rows of R must be independent.”, ”Even if R is invertable, the reconstructed
image always inherit an uncertainty, therefore, it will not be unique.” [19].

Thus, the word ”uniqueness” does not have a unique meaning among the many published
models. Therefore, one needs to analyze the uniqueness problem first. This study, how-
ever, does not intend to clarify this problem now, but at least aims to answer following
questions in order to show scientific consistancy of starspot hypothesis within the basics
of starspot photometry.

• Does a spot with a specific size, temperature, shape and location have a unique
signature on the light curves?

• Is it possible to recover physical spot chracteristics (parameters) from light curves?

3. Basics of starspot photometry

The basics of starspot photometry would be a direct answer to the questions above.
However, the problem can be examined in two steps; 1) direct photometric problem, 2)
inverse photometric problem.

Direct photometric problem is defined as the problem of computing maculation wave
function, that is the synthetic light curves, from the real physical parameters of spots
like sizes, shapes, locations and temperatures. The direct photometric problem, however,
cannot provide a direct solution for the spot parameters. One needs to do many trials
until producing a curve fitting the observations within their uncertainties. Trial and error
methods, however, cannot assure uniqueness of the solutions unless all combinations of
the relevant parameters are tried. On the other hand, the problem appears ill posed

360



EKER

because the number of discrete spots are unknown. Note that the number of minima in
the light curves only indicate a minimum number not the true number.

The inverse photometric problem is defined as the problem of deducing real spot
parameters from the light curves directly without trials. Although, the true number of
spots are unknown, by the help of the inverse photometric problem for a single spot, the
consistency of the starspot hypothesis can be proven.

3.1. Direct photometric problem

A light loss due to cool surface spots in the magnitude scale can be expressed as :

∆mλ(φ) = −2.5 log
Fs + Fp
F

(1)

where Fs and Fp are the fluxes received from the spotted regions and the rest of the
photosphere respectively. F is the reference flux representing a spotfree disk. Fs + Fp
varies as the star rotates because projected areas of the spots on the disk vary. Thus
Fs + Fp is phase dependent. Equation (1) could be used for any number of spots with
any shape. Then

Fs =
n∑
n=1

∫
ωn

Is(θ) dω (2)

where n represents the number of visible spots. ωn is the surface area of the spot n. The
surface intensity of the spots are symbolized by Is. The differential solid angle is dω and
the foreshortening angle is θ. The flux which is received from the rest of the photosphere
(Fp) , then, can be computed by

Fp = F −
n∑
n=1

∫
ωn

Ip(θ) dω (3)

where imaginary photospheric flux over spotted regions is subtracted from the flux of
a spotfree disk. For the sake of simplicity, let us assume a single circular spot. Then,
equation (2) becomes

Fs =
R2

d2

∫ 2π

0

∫ r

0

Is(θ) cos θ sin rdrdϕ (4)

where Is(θ) cos θ represents component of surface intensity in the direction to the line of
sight. sin rdrdϕ is the differential solid angle at which r stands for an angular distance of
the differential surface element from the center of the spot. Thus, if one locates the spot
at the center of the disk ( r changes to θ ) and extends the integral limits to cover whole
disk, by replacing spot intensity Is(θ) with the photospheric intensity Ip(θ), the spotfree
flux can be computed

361



EKER

F =
R2

d2

∫ 2π

0

∫ π
2

0

Ip(θ) cos θ sin θdθdϕ (5)

By adding (2) and (3) for the single spot case,

Fs + Fp = F +
R2

d2

∫ 2π

0

∫ r

0

[Is(θ) − Ip(θ)] cos θ sin rdrdϕ (6)

the total flux from the spot and the rest of the photosphere can be computed. If the term
in the square parentheses in the integral is replaced by

Is(θ) − Ip(θ) = (
Is(θ)
Ip(θ)

− 1)Ip(θ) = (α− 1)Ip(θ) (7)

where α, spot to photosphere intensity ratio, which is the temperature parameter, could
be defined as following

αλ =
Is(θ)
Ip(θ)

=
Bλ(Ts)
Bλ(Tp)

=
e

hc
λkTp − 1

e
hc
λkTs − 1

(8)

which shows the temperature and wavelength dependence of α clearly.
Spot to photosphere intensity ration (α) is expected to vary over the surface of the

spot as if at the sunspots. However, an average value of α may represent an average spot
temperature, thus, α can be assumed constant over a spot. But, the spot location with
respect to the center of the disk is changing due to the rotation. One has to consider
variations of α at each location. Nevertheless, according to the observations of sunspots,
there is no clear θ dependence of α. Thus, at least for the first approximation α can
be taken as a constant that is independent of the θ. This allows α to come out of the
integral. Then the equation (6) becomes

Fs + Fp = F +
R2

d2
(α− 1)

∫ 2π

0

∫ r

0

Ip(θ) cos θ sin rdrdϕ (9)

At the final step of computing the right hand side of equation (1), one needs to
know the limb darkening law (photospheric intensity distribution over the surface of the
disk). Unfortunately, the exact form of the limb darkening law is unknown. Commonly
used linear and quadratic forms are just approximations from the direction dependence
of emerging flux which is computed from model atmospheres. For different practices,
therefore, the solutions of equation (5) and (9) will be presented in three different limb
darkening cases. First, the solutions of equation (5) according to:

1. case n (no limb darkening case): Ip(θ) = I0

F =
πR2

d2
I0 (10)
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2. case ` (linear limb darkening case) : Ip(θ) = I0[1− U(1− cos θ)]

F =
πR2

d2
I0(1− U

3
) (11)

3. case q (quadratic limb darkening case) : Ip(θ) = I0[1−U1(1−cos θ)+U2(1−cos θ)2]

F =
πR2

d2
I0(1 − U1

3
+
U2

6
) (12)

where I0 is emerging intensity from the photosphere into the radial direction. U is linear,
and U1 and U2 are quadratic limb darkening coefficients. Substituting proper F and
proper limb darkening into equation (9), the logarithmic term of equation (1) can be
expressed in the same fashion:

For the case n (no limb darkening):

Fs + Fp
F

= 1 +
α− 1
π

In (13)

For the case ` (linear limb darkening) :

Fs + Fp
F

= 1 +
α− 1

π(1− U
3 )

[(1− U)In + UI`] (14)

For the case q (quadratic limb darkening) :

Fs + Fp
F

= 1 +
α− 1

π(1 − U1
3 + U2

6 )
[(1− U1 + U2)In + (U1 − 2U2)I` + U2Iq] (15)

where

In =
∫ 2π

0

∫ r

0

cos θ sin rdrdϕ (16)

I` =
∫ 2π

0

∫ r

0

cos2 θ sin rdrdϕ (17)

Iq =
∫ 2π

0

∫ r

0

cos3 θ sin rdrdϕ (18)

Notice that the high level cases are reducible to the low level cases. For example if U2 is
zero, the quadratic case is not different than the linear case. Similarly, if limb darkening
coefficients are zero (U2 = U1 = 0 and U = 0), computing the right hand side of equation
(1) for the quadratic or linear cases reduces to the no limb darkening case. Therefore, if
an higher order polynomial would satisfy surface intensity distribution on the disk, the
present formulation can easily be adopted.

Finally, expressing θ in terms of r and ϕ.
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cos θ = cos θ0 cos r + sin θ0 sin r cosϕ (19)

where θ0 represents position of the spot center with respect to the disk center; r is the
angular distance of the differential surface element from the spot center; ϕ is the azimuth
angle; the following solutions for In, I` and Iq can be obtained after integration.

In = π sin2 r cos θ0 (20)

I` =
2π
3

(1− cos3 r)− π cos r sin2 r sin2 θ0 (21)

Iq =
π

2
(1− cos4 r) cos3 θ0 +

3π
4

sin4 r cos θ0 sin2 θ0 (22)

where r represents the angular radius of the circular spot. However, one should notice
that these integrals are true under the condition θ0 ≤ (π/2− r). On the other hand, they
must attain a value zero if θ0 ≥ (π/2 + r) which is the case the spot is totally hidden
behind the star. Computing above integrals at the crossover phases (partial visibility at
the edge of the disk) needs a special treatment. Solutions for partial visibility can be
found in the appendix of the article by Eker[66].

Using θ0 and r, one can compute ∆m which is a single value corresponding to a phase.
To produce a synthetic light curve, however, θ0 of each spot must be computed at all
phases of a full rotation. Consequently, cordinates of the spots (centers) in a corotating
frame (λ, β) and the inclination of the rotation axis (i) also enter in the computation as
spot parameters. Thus, for computing θ0

cos θ0 = cos i sinβ + sin i cos β cos (φ− λ) (23)

where λ and β are longitude and latitude of a spot center and φ represent rotational
phases, φ = 2π

P
(t − t0), where P is the rotational period and t0 is an arbitrary time

to start phases. Note: β = 0 locates the spot on the equator and i = 0 means axis of
rotation is parallel to the line of sight (pole view).

3.2. Inverse photometric problem

According to Eker, the difference between the synthetic curves, which are computed
by the linear and the quadratic cases from the tabulated limb darkening coefficients,
decreases towards the longer wavelengths and higher Teff values [66]. Eker found that
the linear law is sufficient at the V band for the effective temperature range 4000 to 6020
K. That is, using the linear law or quadratic law do not make a noticeable difference on
the synthetic curves at the bands from visual to infrared. Therefore, the most of the
published starspot models are satisfied with the linear limb darkening law. Consequently,
equation (14) expressing the right hand side of the equation (1) will be used in the inverse
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problem studied in this study. Eliminating Fs+Fp
F between (1) and (14), following can be

written

10−
∆mλ(φ)

2.5 − 1
αλ − 1

=
1

π(1− Uλ
3 )

[(1− Uλ)In(φ) + UλI`(φ)] (24)

Theoretically, this equation is true for every band (U, B, V, R, I etc.). However, it
has been argued that it is more suitable for the bands at visual or longer wavelengths.
Let us assume we use two bands V and R. Then, if it is for the V band,

10−
∆mV (φ)

2.5 − 1
αV − 1

=
1

π(1− UV
3 )

[(1− UV )In(φ) + UV I`(φ)] (25)

and for the R band,

10−
∆mR(φ)

2.5 − 1
αR − 1

=
1

π(1 − UR
3 )

[(1− UR)In(φ) + URI`(φ)] (26)

The equations (25) and (26) can be combined into a matrix format∣∣∣∣ BV (φ)
BR(φ)

∣∣∣∣ =
∣∣∣∣ a b
c d

∣∣∣∣ ∣∣∣∣ In(φ)
I`(φ)

∣∣∣∣ (27)

that is, B = T I, where the entries of matrix B are

BV (φ) =
10−

∆mV (φ)
2.5 − 1

αV − 1
, BR(φ) =

10−
∆mR(φ)

2.5 − 1
αR − 1

and the entries of the matrix T are

a =
1− UV

π(1− UV
3

)
, b =

UV

π(1− UV
3

)

c =
1− UR

π(1− UR
3 )

, d =
UR

π(1− UR
3 )

The transformation matrix T is invertable; then I = T−1 B which is∣∣∣∣ In(φ)
I`(φ)

∣∣∣∣ =
1

ad− bc

∣∣∣∣ d −b
−c a

∣∣∣∣ ∣∣∣∣ BV (φ)
BR(φ)

∣∣∣∣ (28)

in the open form.
The equation (28) decouples the geometric parameters from the wavelength depen-

dent temperature effects. To deduce phase dependent geometric functions In(φ) and I`(φ)
from the two light curves, one needs a priory knowledge of limb darkening coefficients,
temperatures of the spot and photosphere only. The unspotted magnitude is the bright-
ness level which the light variations are referenced. The unspotted magnitude is known to
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be an ambiguous parameter observationally. However, for the synthetic curves, especially
for a single spot, it is a known parameter. So that, with four parameters (UV , UR, Tp
and Ts), the light curves at the two color bands can be transformed to the two functions
In(φ) and I`(φ) by the equation (28). Notice that, as if equation (1) in the direct problem,
equation (28) is valid for any number of spots with any shape. However, to proceed we
assume applying it to the synthetic light curves of a single circular spot with a uniform
temperature.

The first parameters to recover from the light curves is the longitude of the spot. The
maximum effect of a spot occurs when it is on the central meridian. Thus, determining
the minimum phase is equivalent to determining the longitude of the spot. For most of
the studies, either the zero phase or zero longitude is arbitrary. Therefore, let φmin = 0,
as if the phases start at the light minimum. Then

[In(0)]2 − [In(φ)]2

π[I`(0) − I`(φ)]
=

sin2 r

cos r
= X (29)

helps to compute the size of the spot.
Equation above requires that the transformation matrix (28) must be applied at two

phases; zero and any other arbitrary phase φ. However, one has to be careful not to
choose a phase at which the spot is partially visible or hidden. See Eker [65] how to avoid
this problem.

Since the value of X is known, from equation (29), it can be written

cos2 r +X cos r − 1 = 0 (30)

which gives a solution for the size,

cos r = −X
2

+
1
2

√
X2 + 4 (31)

Notice that, a quadratic equation gives two solutions, but one of the solutions is discarded
since it implies a spot which is bigger than the visible hemisphere with cos r < 0 . The
value of X is positive. That is, 0 < X <∞ so (31) is valid to give a unique value within
0 < r < π/2.

Another advantage of present formulation is that the inclination of rotation axis (i)
is not required to perform the transformation from the light curves to the functions
In(φ) and I`(φ). The i can be recovered together with β from the light curves. Because
cos θ0 = sin(i + β) at the minimum phase, from (20),

sin (i + β) =
In(0)
π sin2 r

(32)

can be written to compute (i + β). Moreover, the ratio In(0)/In(φ) supplies following
relation between i and β.

tan i = C tanβ (33)
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where

C =
In(0) − In(φ)

In(φ)− In(0) cos θ
which is also a known quantity.

The two equations and the two unknowns, that is, (32) and (33) provide following
solutions for i and β.

tan i =
∓(1−cos φ)

√
(π sin2 r)2−I2

n(0) +
√

(1−cos φ)2(π sin2 r)2−[In(0)(1+cos φ)−2In(φ)]2

2 [In(φ)− In(0) cos θ]
(34)

tanβ =
∓(1−cos φ)

√
(π sin2 r)2−I2

n(0) +
√

(1−cos φ)2(π sin2 r)2−[In(0)(1+cos φ)−2In(φ)]2

2 [In(0)− In(φ)]
(35)

Since there can be two values of (i and β) within 0 < (i + β) < π to satisfy equation
(32), there must be two solutions. The two solutions for i and β are clear because the
numerators in (34) and (35) are double valued. These two solutions are called pairs by
Eker [65,66]. The pairs are not independent. That is, if one of the pairs is known, the
second pair can be computed by the pairing rules [65,66]. Suppose (i1, β1) and (i2, β2),
where i1 and i2 from (34) and β1 and β2 from (35), represent pairs. According to Eker
[65] the pairing rules are :

1) if A = i + β, A1 = A2 or π − A1 = A2

2) i1 + |β2| = π
2 and i2 + |β1| = π

2
3) Latitude in both pairs must carry same sign. That is if β1 < 0 then β2 < 0
Since the projected area is maximum when the spot is on the central meridian, In(0) >

In(φ) and I`(0) > I`(φ) in all cases. If In(φ) > In(0) cosφ the equations (34) and (35)
give two pairs as i1 > 0, i2 > 0 and β1 > 0 ; β2 > 0. But one has to be careful for the
following special cases:
Case 1) if In(φ) < In(0) cosφ

This case happen when the latitude of the spot is negative. In this case, equations (34)
and (35) provide one of the pair with opposite sign. That is, i < 0 and β > 0. Therefore,
one has to reverse the signs of i and β for the pair with the negative inclination. Always
remember that i1 and i2 must be positive and the signs of β1 and β2 must be same both
pairs.
Case 2) if In(0) = π sin2 r

This case provide a unique solution since the first square root terms in (34) and (35)
becomes zero. In this case the numerators are no more double valued.
Case 3) if In(φ) = In(0) cosφ

This case gives triple solution (3 pairs). The pairs are (i, 0), (π/2, β) and (π/2,−β)
where i and β can be computed by
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sin i =
In(0)
π sin2 r

, and cos (∓β) =
In(0)
π sin2 r

(36)

Case 4) if In(0) = π sin2 r, and In(φ) = In(0) cosφ
This case is a combination of the cases 2 and 3. Therefore, it implies a unique solution

with a definite pair which is (π/2, 0) where i = π/2 and β = 0.
Mathematical non–unique solutions of i and β are caused by spherical symmetry of

a circular spot on a spherical star. That is, the spot may produce same projected areas
as the star rotates only at two combination of i and β given by the pairing rules. If i
and β are chosen freely to produce a light curve, as long as the other spot parameters
(size, longitude and temperature), stays the same, i2 = π

2 − |β|, and β2 = π
2 − i can also

produce same light curve if the spot shape is circular. However, if one uses two or more
circular spots or any number of spots (even one) with a shape other than a circle, the
synthetic light curves must be unique because the spherical symmetry works only with a
single circular spot. See the detailed discussion in Eker[65].

Although there is no special formula to compute it, the spot temperature is another
parameter which is supplied by the two light curves. The formulas (29), (34) and (35)
which are given to compute r, i and β appear to have φ (phase) dependence. However,
anyone would agree those parameters must be independent of φ. But the truth is that
those parameters become independent of φ only at the correct spot temperature. There-
fore, using different values of φ at the equations (29), (34) and (35), various r, i and β
values could be determined for each value of φ. Then, repeating this process for various
Ts values in the range 0 < Ts < Tp, the correct Ts can be found when all r(φ), i(φ)
and β(φ) becomes independent of φ. Eker [65] gives two methods to compute the spot
temperature.

3.3. Error Analysis

Most spot solutions today are obtained by trial and error [25] methods. More advanced
techniques like the least squares [23, 24] and ILOT [22] also exist. Some curve fitting
techniques like the least squares, the maximum entropy and the ILOT may support the
standard error estimates of derived parameters. But, those uncertainties are not the true
uncertainties to relate the recovered image to the image of virtually existing spots. Those
uncertainties do not indicate more than the effect of scatter of the data, or an estimation
of how well the geometrical model constrain the related parameters. Studying only the
case of two-spot solutions, Kovari and Bartus [67] investigated the effect of photometric
accuracy for determining spot parameters. Model dependence of their solutions are clear.
So that, they were only able to test the reliability of two-spot modeling technique.

Although solutions for multiple spots are not yet available by the inverse method, the
formulas presented for a single spot allows one to propagate observed uncertainties up to
the derived parameters. Error propagation even for a single spot would be a direct way
to examine the reliability of the reconstructed images as well as the reliability of the light
curves supplying them.
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3.3.1. Uncertainty of the projected spot areas

The transformation matrix (equation 28) can be written in a different form to show the
input parameters openly.

In(φ) =
πUR(1− UV

3 )(10−
∆mV (φ)

2.5 − 1)
(UR − UV )(αV − 1)

−
πUV (1− UR

3 )(10−
∆mR(φ)

2.5 − 1)
(UR − UV )(αR − 1)

(37)

I`(φ) = −
π(1− UR)(1 − UV

3
)(10−

∆mV (φ)
2.5 − 1)

(UR − UV )(αV − 1)
+
π(1− UV )(1− UR

3
)(10−

∆mR(φ)
2.5 − 1)

(UR − UV )(αR − 1)
(38)

where In(φ) is the projection areas of the spots on the disk and I`(φ) is the auxliary
function which exist since liear limb darkening assumed.

The precision and accuracy of these two functions can be determined by the accuracy
of the input parameters ( UV , UR, δmV , δmR, αV and αR ). Except αV and αR, the
uncertainty of the other parameters can be considered independent and random. The
uncertainty of an α involves effective wavelength of the observation bands, photospheric
and spot temperatures by the equation (8). For now let us assume Tp and effective
wavelengths are known accurately, that is, with a negligible error. Thus, in the first
approximation, the uncertainties of αV and αR can be ignored because varying Ts in the
range 0 < Ts < Tp, it is possible to hit a value having negligible uncertainty. Conse-
quently, four independent uncertainties are left to propagate. Then, the uncertainties of
above functions can be computed as

δIn(φ) =

√
(
∂In(φ)
∂UV

δUV )2 + (
∂In(φ)
∂UR

δUR)2 + (
∂In(φ)
∂mV

δmV )2 + (
∂In(φ)
∂mR

δmR)2 (39)

δI`(φ) =

√
(
∂I`(φ)
∂UV

δUV )2 + (
∂I`(φ)
∂UR

δUR)2 + (
∂I`(φ)
∂mV

δmV )2 + (
∂I`(φ)
∂mR

δmR)2 (40)

where (37) and (38) permit partial derivatives which is needed in above relations. Notice
that up to here no assumptions has been made about the surface spots. Therefore, the
equation (39) gives the uncertainty of projected areas of virtually existing spots. In order
to continue to compute uncertainty of the size, let us assume or use the light curves at
two color bands of a single circular spot.

3.3.2. Uncertainty of the size

The equation (31) allows the uncertainty of the spot size can be computed by

δr =
∣∣∣∣ drdX

∣∣∣∣ δX (41)
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where

dr

dX
=
√

cos r
X(X2 + 4)

(42)

On the other hand, the uncertainty of X in (41) comes from

δX =
∣∣∣∣ ∂X

∂In(0)

∣∣∣∣ δIn(0) +
∣∣∣∣ ∂X

∂In(φ)

∣∣∣∣ δIn(φ) +
∣∣∣∣ ∂X

∂I`(0)

∣∣∣∣ δI`(0) +
∣∣∣∣ ∂X

∂I`(φ)

∣∣∣∣ δI`(φ) (43)

The partial derivatives can be taken from (29) and the uncertainties of In and I` at the
phases zero and φ can be computed by (39) and (40). Since the input uncertainties for
computing δX are not independent and random anymore, the propagated uncertainty by
(43) represent an upper limit. Since (41) involves (43), the uncertainty of the size is also
an upper limit.

3.3.3. Uncertainity of (i+ β)

Using partial derivatives from (34) and (35) and involved uncertainties δr, δIn(0) and
δIn(φ), original uncertainties [δUV , δUR, δmV (φ) and δmR(φ)] can be propagated to com-
pute the uncertainty of i and β in a similar way. Eker [68] describes two methods to com-
pute them. But, for the sake of brevity, only the uncertainty of (i + β) will be described
here. Defining A = i+ β, the equation (32) becomes

sinA =
In(0)
π sin2 r

(44)

Consequently, for the relative error of sin A, it can be written

δ sinA
sinA

=
δIn(0)
In(0)

+ 2
δ sin r
sin r

(45)

The relative error of sin r can be expressed in terms of the relative error of cos r. If
y2 + z2 = 1 (y = sin r, z = cos r), then dy

y
= −z2

y2
dz
z

, so that δ sin r
sin r

= − cos2 r
sin2 r

δ cos r
cos r

.
Using this in (45), it becomes

δ sinA
sinA

=
δIn(0)
In(0)

+ 2
1

tan2 r

δ cos r
cos r

(46)

Finally the relative error of cos r can be expressed in terms of X. From (31), d cos r
cos r =

−dx√
X2+4

. Substituting this into (46)

δ sinA
sinA

=
δIn(0)
In(0)

+
2 δX

tan2 r
√
X2 + 4

(47)

is a straight forward equation to compute relative error of sinA by the quantities formerly
calculated. Then, absolute error of A
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δA = (tanA)M (48)

where M = δ sinA
sinA represents the relative error of sinA which is the right hand side of

equation (47).
The uncertainty of A has a special importance because it represents roughly the lower

limits of the uncertainties of i and β. For example if i is known, then β = A − i (from
the definition A = i+ β). Consequently the uncertainty of the latitude

δβ = δA+ δi (49)

If the uncertainty of i is zero, the uncertainty of β must be equal to the uncertainty
of A. Otherwise, the uncertainty of β becomes bigger than δA.

3.3.4. Uncertainty of the spot temperature

If equation (24) is solved for αλ

αλ =
π(1− Uλ

3 )(10−
∆mλ
2.5 − 1)

(1− Uλ)In + UλI`
+ 1 (50)

then, the uncertainty of each α in two bands can be computed by

δαλ =
∣∣∣∣∂αλ∂Uλ

∣∣∣∣ δUλ +
∣∣∣∣ ∂αλ∂mλ

∣∣∣∣ δmλ +
∣∣∣∣∂αλ∂In

∣∣∣∣ δIn +
∣∣∣∣∂αλ∂I`

∣∣∣∣ δI` (51)

then, using the definition αλ = Bλ(Ts)
Bλ(Tp) , the relative uncertainty of the spot temperature

is

δTs
Ts

=
λkTs
hc

(1− e−
hc
λkTs )

δαλ
αλ

(52)

3.3.5. Uncertainty of longitude

The longitude of a spot is an independent parameter. Its value and uncertainty can
be deduced directly from the measurements of the minimum phase on the light curves.
Therefore, no special formula are presented for them.

4. Applications

Using the analytical formulas of the inverse photometric problem, Eker [65] recovered the
original model parameters from pre-generated synthetic light curves of nine models with
various spot configurations. Table 1 displays the system parameters and Table 2 gives
the model parameters of those nine models.

Table 3 gives the input parameters used by Eker [65] which are significant up to six
decimal digits. The solution parameters including the projected area In(φ) and A are
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Table 1. System Parameters

Wavelength Tp
Band (Å) U (K)

V 5500 0.75 4820a

R 7000 0.61 ...
a Single circular spot with uniform temperature

Table 2. Model Parameters: Tp − Ts = 1300 K (all models); longitude (λ): π (all models)

Models
parameters 1 2 3 4 5 6 7 8 9
Inclination (i)(deg.) 90 90 75 75 75 60 60 60 60
Latitude (β) (deg.) 18 0 0 -8.5 30 15 31 81 -30
Size (r) (deg.) 19.09 19.09 23.65 23.65 20 20 21 21 21

Table 3. Input Parameters

Models
parameters 1 2 3 4 5&6 7 8 9
∆mV (0) (mag.) 0.127851 0.139971 0.202129 0.183956 0.144345 0.169581 0.076659 0.053656

∆mR(0) (mag.) 0.110888 0.120449 0.174463 0.160124 0.124837 0.145773 0.070662 0.050993

Phase (φ) 45 45 45 45 45 45 45 30

∆mV (φ) (mag.) 0.070545 0.076641 0.111011 0.099247 0.086860 0.109417 0.069122 0.038807

∆mR(φ) (mag.) 0.064471 0.069529 0.101015 0.091182 0.078549 0.097755 0.064289 0.037846

Table 4. Solution Parameters(recovered ∓ uncertainty)

parameters Models
∓uncertainty 1 2 3 4 5&6 7 8 9
In(0) (R2

?) 0.31959 0.33603 0.48833 0.46362 0.35498 0.40347 0.25392 0.20174
∓δIn(0) ∓0.000017 ∓0.000017 ∓0.000016 ∓0.000016 ∓0.000015 ∓0.000016 ∓0.000018 ∓0.000018
Size (r) (deg) 19.089 19.089 23.651 23.649 20.002 21.001 21.014 21.003
∓δr ∓0.0045 ∓0.0042 ∓0.0034 ∓0.0036 ∓0.0048 ∓0.005 ∓0.032 ∓0.014
A(i + β) (deg) 72.013 90 74.99 66.506 74.957 89.328 38.944 29.993
∓δA ∓0.0897 ∓0.027 ∓0.0658 ∓0.0422 ∓0.1083 ∓2.4036 ∓0.1376 ∓0.0457
i1 (deg) 72 90 75 74.99 59.98 59.67 8.99 59.84
∓δi1 ∓0.146 ∓0.027 ∓0.1085 ∓0.1994 ∓0.0914 ∓1.227 ∓0.0541 ∓13.95
i2 (deg) 89.99 .... 89.99 81.51 75.03 60.33 60.05 60.15
∓δi2 ∓0.564 ∓0.0428 ∓0.157 ∓0.0549 ∓1.196 ∓0.1146 ∓13.91
β1 (deg) 0.01 0 -0.01 -8.49 14.97 29.67 29.95 -29.85
∓δβ1 ∓0.0564 ∓0.027 ∓0.0428 ∓0.157 ∓0.0549 ∓1.196 ∓0.1146 ∓13.91
β2 (deg) 18 .... -15 -15.01 30.02 30.33 81.01 -30.16
∓δβ2 ∓0.146 ∓0.1085 ∓0.1994 ∓0.0914 ∓1.227 ∓0.0541 ∓13.95
∓δαV ∓0.00003 ∓0.000027 ∓0.000018 ∓0.00002 ∓0.000026 ∓0.000022 ∓0.00005 ∓0.000073
∓δTs (Kelvin) ∓0.104 ∓0.0949 ∓0.064 ∓0.0708 ∓0.0918 ∓0.0774 ∓0.177 ∓0.226
∓M (rad.) ∓0.00059 ∓0.000475 ∓0.000308 ∓0.000321 ∓0.000508 ∓0.000492 ∓0.0029 ∓0.00138
∓M (deg.) ∓0.029 ∓0.027 ∓0.017 ∓0.018 ∓0.029 ∓0.028 ∓0.17 ∓0.079
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Table 5. Uncetainty of the solution parameters if δmV = δmR = 0.005 mag., δUV = δRR =
0.005 mag.

Models
∓uncertainty 1 2 3 4 5&6 7 8 9
∓δIn(0) 0.0853 0.0846 0.0804 0.0814 0.0842 0.0826 0.0888 0.0905
∓δr(deg) 22.57 21.07 17.27 17.92 24.04 24.83 159.7 71.07
∓δA(deg) 448.96 136.20 239.96 211.45 541.95 12034 688.22 228.53
∓δi1(deg) 731 136.2 543 998 457 6147 270 69768
∓δi2(deg) 282 214 786 274 5989 573 69536
∓δβ1(deg) 282 136.2 214 786 274 5989 573 69536
∓δβ2(deg) 731 543 998 457 6147 270 69768
∓δαV 0.1543 0.1417 0.0972 0.1060 0.1368 0.1168 0.2523 0.3674
∓δTs (K) 544 500 343 344 482 412 890 1295
∓M (rad.) 2.544 2.377 1.541 1.604 2.542 2.463 14.863 6.910
∓M (deg.) 145.76 136.20 88.32 91.91 145.65 141.10 851.58 395.92

presented in the order of derivation in Table 4. The uncertainties, which are recorded
below the recovered parameters in Table 4, are computed by assuming that the input
parameters (Table 3) are significant to six decimal digits in the magnitude scale ( δmV ≈
δmR ≈ 10−6 mag.). The limb darkening coefficients were assumed to have no error. The
uncertainty of αV and the corresponding uncertainty of Ts, and the relative error of sinA
which is defined as M are also appended to the Table 4.

It is clear from the Table 4 that the parameters are accurately predicted. Comparing
original and recovered parameters, it is also clear that the propagated uncertainties are
in the correct order. Unfortunately, the real light curves are not that accurate. In
order to imitate realistic uncertainties, that is, assuming δmV ≈ δmR ≈ 0.005 mag and
δUV ≈ δUR ≈ 0.005, the propagated errors are recomputed and recorded in Table 5.

According to Table 5, the system inclination (i), the spot latitude (β) and A = i+ β
would not be reliable at all since their uncertainties are too big. Even the spot sizes are
uncertain as much as themselves. The uncertainty of the projected areas are the smallest
but relatively speaking they are about 20 to 25% and even larger for the models 8 and 9.

Considering the fact that those uncertainties are upper limits, the actual errors would
be smaller. But still, the most accurate light curves of today’s technology do not ap-
pear good for photometric imaging except maybe in determining projected areas and
spot temperatures. Table 5 suggests about ∓500 K uncertainty for the recovered spot
temperature which is not good but acceptable. The latitude (β) is the most uncertain
parameter. Even if the M values are considered in Table 5, that is, even if i is known
precisely, the uncertainty of β would be greater than the allowed limits of β which are
(0 < β < 90).
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5. Conclusions

1. Photometric imaging of starspots is a consistent physical problem. A spot with
specific parameters must have unique effects on the light curves. Oherwise it would
never be possible to recompute spot parameters analytically from the light curves.

2. However, accuracy of the current earth-based photometric data (observations) is in-
sufficient for a successful photometric imaging. Among the parameters, the biggest
uncertainty is associated with the spot latitudes. Thus, today’s most reliable earth
based observations with δmλ ≈ 0.005 mag accuracy is not sufficiently accurate to
locate even for a single spot on the latitude scale.

δβ > 90 deg

3. Problems such as indeterminacy of spot latitudes, latitude fixing and related non-
uniqueness ambiguities could now be atributed to the insufficient accuracy of the
data.

4. Polar spots which is not observed on the sun but claimed by various models could
be a problem also associated with the uncertainty of the data.

5. Uncertainty of the limb darkening coefficients is negligible beside the uncertainty
of the brightness measurements. That is, uncertainty of the brightness dominates.

6. δmλ ≈ 0.0001 mag or better accuracy is needed for a reliable photometric imaging.
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