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Abstract

The structure of a hard sphere fluid has been calculated numerically via the
Percus-Yevick (PY) and hypernetted-chain (HNC) closure relations and used as a
reference system to calculate the structure of liquid alkali metals under the opti-
mized random-phase approximation (ORPA) using the effective ion-ion pair poten-
tial formed by the Heine-Abarenkov (HA), and the empty-core (EC) pseudopoten-
tials.

The results are compared with experimental results. The calculations made by
the reference system under the HNC closure relation are in better agreement with
experimental results than those found under the PY closure relation.

1. Introduction

Over the last three decades, theories have been developed to calculate the thermody-
namic and structural properties of liquid alkali metals. The hard sphere model [1], which
is the first realistic conception for liquid metals, has been taken as a reference system for
calculating their structure and thermodynamic properties in thermodynamic perturbation
theories. A thermodynamic variation method based on and using the Gibbs-Bogoliubov
inequality model [2-4] calculates the correct hard sphere diameter without any amend-
ment in the structure functions. Later, Week-Chandler-Andersen (WCA) [5-8] showed
that deviations of the true ion-ion pair potential from a hard sphere form may be taken
into account by splitting the potential into a purely repusive short-range term and a long-
range oscillatory part. Therefore each treated by suitable perturbative techniques: the
WCA “blip function” expansion for the repulsive term, and the optimized random-phase
approximation (ORPA) for the oscillatory part. So far, the structure of liquid alkali
metals has been calculated by these methods using the hard sphere reference system and
empty-core pseudopotential taken as an interaction between and electron and ion [9,10].
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Our aim in this paper is first to find the structure function of a hard sphere reference
system by solving numerically the Ornstein-Zernike (OZ) integral equation under the PY
and HNC closure relations, and then to calculated by the two methods the structure
functions for liquid alkali metal: by taking into account a perturbed form of the reference
system; and by having an ion-ion pair potential made by the HA and EC pseudopotentials.

2. Theory

The HA pseudopotential for an electron-ion interaction is defined as

vei(r) =
{ −Ze2A/RM r < RM

−Ze2

r r > RM ,
(1)

where Z is the valence of the ion and A and RM are two potential parameter [11-14].
According to the linear response theory, the effective ion-ion pair potential is given as

φ(r) =
Z2e2

r
(1− 2

π

∫ ∞
0

FN(q)
sin qr
q

dq), (2)

where FN(q), the energy wave number characteristic, is of the form:

FN(q) =
vei(q)2

(4πZe2ρ
q2 )2

[1− 1
ε(q)

]. (3)

Here, vei(q) is the Fourier transform of the electron-ion pseudopotentials given by (1), ρ
shows ion number density and ε(q) is the dielectric function of the electron gas

ε(q) = 1−
4πe2

q2 χ(q)

1 + 4πe2

q2 G(q)χ(q)
, (4)

where χ(q) is the Lindhard function

χ(q) = −mkF
π2~2

[
1
2

+
4k2
F − q2

8kF q
ln|2kF + q

2kF − q
|
]

(5)

and G(q) is the local field correction term. In our study the G(q) form suggested by
Ichimaru-Utsumi [15] is used.

The effective ion-ion pair potential given by relation (2) can be separated into two
parts:

φ(r) = φ0(r) + φ1(r) (6)

Here, φ0(r) is the purely repulsive short range term

φ0(r) =
{
φ(r)− φ(r0) r < r0

0 r > r0,
(7)

and φ1(r) is the long range oscillatory term
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φ1(r) =
{
φ(r0) r < r0

φ(r) r > r0,
(8)

where r0 is that value of r for which φ(r) is a minimum. Weeks et al.[5] showed that the
hard sphere diameter σ is determined by the condition∫

Bσ(r)d~r = 0, (9)

to optimize the convergence of the functional Taylor expansion of the free energy of a
system interacting with a purely repulsive short range potential φ0(r), in terms of the
blip function Bσ(r)

F = F0 −
ρ

2β

∫
Bσ(r)d~r + . . . (10)

Here, Bσ(r) is given as

Bσ(r) = yσ(r)[exp(−βφ0(r)) − exp(−βφσ(r))] (11)

and yσ(r) is given as

yσ(r) = gσ(r)exp[βφσ(r)], β = 1/(kBT ), (12)

and the pair potential of the hard sphere reference system is

φσ(r) =
{

+∞ r < σ
0 r > σ,

(13)

In our study, the pair correlation function is obtained by solving numerically the OZ
integral equation [17] defined by

h(r) = c(r) + ρ

∫
c(r′)h(|~r − ~r|)d~r, h(r) = g(r)− 1 (14)

with the approximations

cPY (r) = g(r)[1− exp(−βφ(r))] (15)

cHNG(r) = h(r)− lng(r) − βφ(r). (16)

Then the pair correlation function is given by

gWCA(r) = gσ(r) +Bσ(r) (17)

from Equations (9) and (11) under the WCA approximation. In order to calculate the
contribution of the long range term φ1(r), the total correlation function h(r) and the
direct correlation function c(r) are divided into two parts:
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h(r) = h0(r) + h1(r) (18a)
c(r) = c0(r) + c1(r). (18b)

By substituting hWGA for h0(r) and cWGA and using the OZ equation, the Fourier
transform of h1(r) is found to be

h1(q) =
Sσ(q)c1(q)Sσ(q)
1− ρc1(q)Sσ(q)

(19)

where c1(q) is the Fourier transform of c1(r) and the hard sphere static structure factor
Sσ(q) is

Sσ(q) = 1 + ρ

∫
[gσ(r) − 1]exp[−i~q.~r]d~r. (20)

On the other hand, the ORPA is defined [7,8] as

c1(r) = −βφ?1(r) =
{
−βψ(r) r < σ
−βφ1(r) r > σ,

(21)

with
h1(r) = 0, r < σ. (22)

Here, ψ(r) is a function taken as

ψ(r) = φ(r0) +
∑
n=1

an(r − σ)n. (23)

Now employing the ORPA, values of an that minimize the free energy function given by

F [φ?1(q)] =
1

(2π)3

∫
{ρβSσ(q)φ?1(q)− ln[1 + ρβSσ(q)φ?1(q)]}d~q (24)

as well as satisfy Equation (22) can be determined [17]. Thus by substituting c1(r), found
from the equation (21) (and therefore c1(q)) in the equation (19), one obtains h1(q) and
hence h1(r). Consequently, gORPA(R) is given by

gORPA(r) = g(WCA)(r) + h1(r). (25)

3. Results and Conclusions

The effective pair potential calculated by Equation (2), using the HA pseudopotenteial
parameters, ion number densities and temperatures for alkali metals tabulated in Table
1 are shown in Figure 1.
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Table 1. The HA pseudopotential parameters

Metal A RM(au) ρ(1/au3) T(◦K)
Li 1.313 2.8 0.00648 523
Na 1.124 3.4 0.00350 473
K 1.068 4.2 0.00182 473
Rb 1.073 4.6 0.00145 473
Cs 1.066 4.8 0.00116 473
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Figure 1. The pair potentials for liquid alkali metals

We calculated values of σ that satisfy condition (9) for each alkali liquid metal by
taking the purely repulsive short range term of the effective pair potential that we formed.
These results are given in Table 2 together with results found by other theories.

Table 2. Values calculated from WCA theory under the PY (σPY ) and HNC (σHNC closure

relations.

Metal σPY (au) σHNC(au) σa(au) σb(au) ρ(1/au3) T (◦K)
Li 4.419 4.389 - 5.10 0.00648 523
Na 6.287 6.613 6.16 6.16 0.00350 473
K 7.747 7.575 7.54 7.62 0.00182 473
Rb 8.262 8.087 7.97 8.15 0.00145 473
Cs 8.555 8.418 8.52 9.02 0.00116 473

a Singh and Sigh [18], b Hafner [4]
We also calculated the pair correlation functions gORPA(r) under the PY and HNC

closure relation by using these more realistic σ values. These results for each liquid metal
are shown in Figure 2 with the experimental results from [19].
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Figure 2. Pair correlation functions g(r) for liquid alkali metals

Consequently, the ORPA results obtained by the reference system solved numerically
under the HNC closure relation are more compatible with experimental results than those
obtained by the PY reference system.
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