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Abstract

Lattice dynamical calculations are performed on γ-iron using the Clark-Gazis-
Wallis (CGW) model to represent the ion-ion interactions, and a modified form of
the Sharma-Joshi model to include ion-electron interactions. The theory is used to
compute the phonon dispersion curves, frequency spectra and the lattice specific
heat of γ-iron. The obtained results are in good agreement with the experimental
findings, and are better than those calculated using the other theories.

Introduction

As is well known, iron is bcc α-phase at low temperature and it undergoes tranfor-
mation to the fcc γ-phase at approximately 1200K, then transforms to bcc δ-phase at
approximately 1670K. Because of its technological importance, many papers exist in the
literature on the lattice dynamics of bcc iron [1-4], but fewer investigations are published
for γ-iron [5,6,7], the reason being the difficulty of growing in situ single crystals for γ-
iron. After Zarestky and Stassis measurement [8] of γ-iron phonon frequencies at high
temperature the present work is the fourth theoretical study on the lattice dynamics of
γ-iron.

Okoye and Pal [7] computed the phonon frequencies of γ-Fe within the frame work
of the transition metal model potential (TMMP) approach of Animalu [9], including the
contribution of the short-range three-body interactions. Since the d-electrons and the
conduction electrons present in the transition metals significantly affect the lattice dy-
namical behavior in γ-iron, the TMMP approach does not give very good agreement with
experiments (mainly for the trasverse modes of vibration) and thus is limited as a model.
Moreover, transition metals pseudopotential and second-order pertubation theories are
also inadequate and unsatisfactory for γ-iron [7].

Singh and Rathore [6], approached the problem using a pairwise potential giving
higher frequencies than those of experiment, mainly in the longitudinal branches. Al-
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though the pairwise potential produces the same dynamical matrix as those of the DAF
(de Launay Angular Force) model [10,11,12], its dynamical matrix is not rotationlaly
invariant [11].

In this paper, we have used the CGW angular force model, developed orginally by
Clark-Gazis-Wallis [2], and have included ion-electron interactions following the scheme
of Behari and Tripathi [13,14,15]. The CGW model guarantes rotational invariance for
the resulting dynamical matrix [11,16,17], and gives a dynamical matrix different from
the DAF model for fcc metals [18].

Theory and Computation

Secular Determinant

The phonon frequencies in the harmonic approximation are given by the usual secular
equation

|Dαβ(~k)−mω2Iδαβ | = 0, (1)

where

Dαβ(~k) = Di−i
αβ (~k) + Di−e

αβ (~k). (2)

Here, Dαβ(~k) are the elements of the dynamical matrix, ~(k) is the wave vector confined
to the first Brillouin zone, I is the unit matrix of order three and m is the ionic mass. In
this present scheme the ion-ion interaction Di−i

αβ (~k) is represented by the CGW model,
which is effective up to second neighbours, and the ion-electron interaction Di−e

αβ (~k) is
assumed to have the form of the Behari and Tripathi model [15].

The elements of the dynamical matrix in Eq.(1) for fcc structure are given by Bose et
al. [18]:

Dxx = 2
[
α+

8
a2

(γ1 + γ2)
]

[2−C1(C2 + C3)] + 4βS2
1

− 4γ1

a2
(2 cos 2πak1 − cos 2πak2 − cos 2πak3)

+ a3π2k2
1keG

2(x) (3)

Dxy = 2
(

2α− 16γ1

a2

)
S1S2 + a3π2k1k2keG

2(x), (4)

where Ci = cos πaki, Si = sinπaki, G(x) = 3( sin x−x cosx
x3 ) and x = 2πkγ0.α, β and γ1, γ2

are the central and angular force constants corresponding to the first and second neigh-
bours, respectively. a, ki, γ0 and ke are the lattice constant, the phonon wave vector
compenents, the radius of the Wigner-Seitz sphere and the bulk modulus of the electron
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gas, respectively.

Force Constants

By expanding the secular determinant in the long-wavelength limit (k → 0), one gets
the following relations between the elastic constants and the force constants, as in [18]:

aC11 = 2α+ 2β +
32γ1

a2
+

16γ2

a2
+ ake

aC12 = α− 16γ1

a2
− 8γ2

a2
+ ake

aC44 = α+
8γ2

a2

mω2
L = 8α+

64γ1

a2
+

64γ2

a2
+ akeπ

2G2(x)

mω2
T = 4α+

32γ1

a2
+

32γ2

a2
, (5)

where C11, C12 and C44 are measured elastic constants; and νL(= ωL/2π) and νT (=
ωT /2π) are the zone boundary frequencies in [100] direction.

Solutions to Eq (5) give the unknown constants, which are substituted in the dynam-
ical matrix to find the phonon frequencies in he main symmetry directions [100], [110]
and [111]. For the present work, the required experimental constants and the calculated
parameters are given in Table 1 and Table 2, respectively.

Table 1. Input data [8,19] for computation of force constants.

C11 C12 C12 νL νT a
1012dyn/cm2 1012dyn/cm2 1012dyn/cm2 1012Hz 10−10m

1.54 1.22 0.77 7.4611 5.3867 3.64

Table 2. The calculated force constants for γ-iron in units of dyn/cm2.

γ1/a
2 γ1/a

2 α β ake
-175.192 -936.955 35523.650 1755.136 -1414.378

The obtained force constants are then used to calculate the frequency distribution
function, g(ν), as a function of frequency with the algorithm of Gilat and Raubenheimer
[20] and is shown in Fig. 1. It shows very similar trends to that of Zarestky and Stassis’s
[8] calculations based on the experimental findings. Further, we have also computed the
specific heat Cv at different temperatures from the formula [21]

Cv =
3R

3000

∑
v

E(hv/kT )g(ν), (6)

where g(ν) is the frequency distribution function for γ-iron, R the gas constant, and
E(hν/kT ) the Einstein function defined by
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E(x) =
x2ex

(ex − 1)2
, (7)

where x = hν/kT .
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Figure 1. Phonon dispersion curves for γ-iron.

Numerical Results and Discussion

In order to determine the phonon frequencies of γ-iron, we have calculated the ion-ion
and ion-electron interaction parts of the dynamical matrix following exactly the proce-
dures in [15,18]. The computed dispersion curves for γ-iron are shown in Fig.2. The
experimental values reported by Stassis [8] are also marked in the figure. A close in-
spection of the figure reveals that the computed curves are in good agreement with the
experimental ones in all three symmetry directions except on the zone boundary in the
[111] direction. The calculated frequencies in this direction are higher by about of %20
than those measured experimentally. The calculated maximum frequency for γ-iron is
about of 7.26×1012Thz, and is in good agreement with that derived from the experimen-
tal frequency distributions (7.26×1012Thz). The temperature dependence of specific heat
Cv is shown in Fig.3., and it shows the expected behaviour in low (θ ≤ 10/T ) and high
temperature values.
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Figure 2. Frequency distribution curve of γ-iron.
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Figure 3. Cv-T curve for γ-iron.

It may be concluded that the present model represents correctly the actual interactions
responsible for the lattice vibrations in γ-iron.
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