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Abstract
Lattice dynamical calculations are performed on ~-iron using the Clark-Gazis-
Wallis (CGW) model to represent the ion-ion interactions, and a modified form of
the Sharma-Joshi model to include ion-electron interactions. The theory is used to
compute the phonon dispersion curves, frequency spectra and the lattice specific
heat of «-iron. The obtained results are in good agreement with the experimental
findings, and are better than those calculated using the other theories.

Introduction

As is well known, iron is bee a-phase at low temperature and it undergoes tranfor-
mation to the fcc v-phase at approximately 1200K, then transforms to bcc d-phase at
approximately 1670K. Because of its technological importance, many papers exist in the
literature on the lattice dynamics of bee iron [1-4], but fewer investigations are published
for 4-iron [5,6,7], the reason being the difficulty of growing in situ single crystals for -
iron. After Zarestky and Stassis measurement [8] of «-iron phonon frequencies at high
temperature the present work is the fourth theoretical study on the lattice dynamics of
~-iron.

Okoye and Pal [7] computed the phonon frequencies of v-Fe within the frame work
of the transition metal model potential (TMMP) approach of Animalu [9], including the
contribution of the short-range three-body interactions. Since the d-electrons and the
conduction electrons present in the transition metals significantly affect the lattice dy-
namical behavior in v-iron, the TMMP approach does not give very good agreement with
experiments (mainly for the trasverse modes of vibration) and thus is limited as a model.
Moreover, transition metals pseudopotential and second-order pertubation theories are
also inadequate and unsatisfactory for ~-iron [7].

Singh and Rathore [6], approached the problem using a pairwise potential giving
higher frequencies than those of experiment, mainly in the longitudinal branches. Al-
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though the pairwise potential produces the same dynamical matrix as those of the DAF
(de Launay Angular Force) model [10,11,12], its dynamical matrix is not rotationlaly
invariant [11].

In this paper, we have used the CGW angular force model, developed orginally by
Clark-Gazis-Wallis [2], and have included ion-electron interactions following the scheme
of Behari and Tripathi [13,14,15]. The CGW model guarantes rotational invariance for
the resulting dynamical matrix [11,16,17], and gives a dynamical matrix different from
the DAF model for fcc metals [18].

Theory and Computation

Secular Determinant

The phonon frequencies in the harmonic approximation are given by the usual secular
equation

| Do (k) — mw?I64s] = 0, (1)

where

Dap(k) = Doy (k) + Doy (k). (2)

Here, Do (E) are the elements of the dynamical matrix, (lg) is the wave vector confined

to the first Brillouin zone, I is the unit matrix of order three and m is the ionic mass. In
this present scheme the ion-ion interaction Df;g(k:) is represented by the CGW model,

which is effective up to second neighbours, and the ion-electron interaction Dfx_ﬁe (E) is
assumed to have the form of the Behari and Tripathi model [15].

The elements of the dynamical matrix in Eq.(1) for fcc structure are given by Bose et
al. [18]:

8
Dis =2 |a+ Syl +0)| [2 - Ca(Co + )] + 4552

4’)/1
-7 (2 cos 2wak; — cos 2waks — cos 2waks)
+ a1 kk G? (z) (3)
- 1671 3_2 2
ny =2|2a— P 515y + a’mk1kok .G (x), (4)

where C; = cosmak;, S; = sinmwak;, G(z) = 3(“““;#) and z = 2wk~y.a, 8 and 1, V2
are the central and angular force constants corresponding to the first and second neigh-
bours, respectively. a,k;,v0 and k. are the lattice constant, the phonon wave vector
compenents, the radius of the Wigner-Seitz sphere and the bulk modulus of the electron
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gas, respectively.

Force Constants

By expanding the secular determinant in the long-wavelength limit (kK — 0), one gets
the following relations between the elastic constants and the force constants, as in [18]:

aChy = 2a + 26 + 33;1 + 1232 + ake

aCio = a — 1231 - 8@% + ake

aCy=a+ 8@%

mw% = 8a + szl + ij + ak?eWQGQ(x)

mwa = 4a + 3zzl + ﬁ, (5)

where Ci1,Ci2 and Cyy are measured elastic constants; and vi(= wg/27) and vp(=
wr/27) are the zone boundary frequencies in [100] direction.

Solutions to Eq (5) give the unknown constants, which are substituted in the dynam-
ical matrix to find the phonon frequencies in he main symmetry directions [100], [110]
and [111]. For the present work, the required experimental constants and the calculated
parameters are given in Table 1 and Table 2, respectively.

Table 1. Input data [8,19] for computation of force constants.

Cn Cr2 Cr2 Vi, 7 a
102dyn/em?  102dyn/cm?  102dyn/cm?®  102Hz 107'%m
1.54 1.22 0.77 7.4611 5.3867  3.64

Table 2. The calculated force constants for y-iron in units of dyn/cm?.

71 /a? 71 /a? o 8 ake
-175.192 -936.955 35523.650 1755.136 -1414.378

The obtained force constants are then used to calculate the frequency distribution
function, g(v), as a function of frequency with the algorithm of Gilat and Raubenheimer
[20] and is shown in Fig. 1. It shows very similar trends to that of Zarestky and Stassis’s
[8] calculations based on the experimental findings. Further, we have also computed the
specific heat C, at different temperatures from the formula [21]

C, = % Z E(hv/ET)g(v), (6)

where g(v) is the frequency distribution function for 4-iron, R the gas constant, and
E(hv/kT) the Einstein function defined by
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z2%e®
E(zx) = 7
@) = o (m
where = hv/kT.
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Figure 1. Phonon dispersion curves for y-iron.

Numerical Results and Discussion

In order to determine the phonon frequencies of y-iron, we have calculated the ion-ion
and ion-electron interaction parts of the dynamical matrix following exactly the proce-
dures in [15,18]. The computed dispersion curves for v-iron are shown in Fig.2. The
experimental values reported by Stassis [8] are also marked in the figure. A close in-
spection of the figure reveals that the computed curves are in good agreement with the
experimental ones in all three symmetry directions except on the zone boundary in the
[111] direction. The calculated frequencies in this direction are higher by about of %20
than those measured experimentally. The calculated maximum frequency for 7-iron is
about of 7.26x10'2Thz, and is in good agreement with that derived from the experimen-
tal frequency distributions (7.26x10'2Thz). The temperature dependence of specific heat
C, is shown in Fig.3., and it shows the expected behaviour in low (6 < 10/T) and high
temperature values.
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Figure 2. Frequency distribution curve of v-iron.
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Figure 3. C,-T curve for y-iron.
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It may be concluded that the present model represents correctly the actual interactions

responsible for the lattice vibrations in ~-iron.
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