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Abstract

Highlights of the interaction between fundamental research and semiconductor
device technology are summarized.

1. Prehistoric times (i.e. BS-Before Shockley)

The first forty years of the twentieth century witnessed the discovery of quantum me-
chanics, the photon, electroluminescence, the role of defects in solids and the properties
of metal-semiconductor contacts, all of which laid the foundation for the technological
revolution that was to come. Quantum theory explained the difference between met-
als, semiconductors and insulators in terms of energy bandstructure, and accounted for
electron states associated with lattice defects and impurities. In 1934 Fermi invented
pseudopotentials, which were to become vital for bandstructure calculations. Schottky
and Mott, separately described the metal-semiconductor contact in 1938, an understand-
ing that was to become crucial to devices like MESFETs, MOSFETs, IMPATTs and
charge coupled devices. Semiconductors began to be used as thyristors and photodetec-
tors and point-contact rectification was beginning to be understood. And then there was
Shockley...

2. History

Modern electronics began with the invention of the transistor at Bell Telephone Lab-
oratories in Murray Hill, New Jersey by Bardeen, Brattain and Shockley who were subse-
quently awarded the Nobel Prize in 1956. (Since all of the elements in what follows can be
found in most text books, the author will save space by not quoting detailed references.)
The early transistors were chunky, centimetre-sized single crystals of Ge with p-n junc-
tions back to back involving both electrons and holes. The physics of p-n junctions was
set out in a classic paper by Shockley in 1949, the first example of what was to become a
very fruitful interplay of physics and device technology. Shockley went on to contemplate
the effect of heterojunctions (1951) and the advent of the junction field-effect transistor
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(JFET) (1952), innovations that had to wait a number of years for crystal-growing tech-
niques to catch up with theory. At present time, field-effect transistors based on Si have
revolutionized electronics and heterojunctions based on GaAs have found extensive rôles
in hot-electron transistors, photodetectors and, of course, in quantum-well devices.

Semiconductors became recognized as being extraordinarily versatile materials and
new devices were quick to follow. Perfect marriages of quantum theory and semicon-
ductor technology led to Esaki’s tunnel diode 1958 (another Nobel Prizewinner, in 1973)
and, after Townes’s invention of the maser in 1954, to the semiconductor laser described
by Dumke in 1952. A theoretical exploration of the effect of bandstructure on charge
transport, initiated by Krömer (1958), lead to the discovery of negative differential re-
sistance (NDR) and associated instabilities by Ridley and Watkins (1961, 1963). These
effects in GaAs, predicted by Hilsum in 1962 and discovered by Gunn in 1963 triggered
a range of transferred-electron devices (TED) that paralleled IMPATTs as microwave
generators. GaAs, CdS and other III-V and II-VI compounds offered a further instability
through their piezoelectricity giving rise to the acoustoelectric effect but devices based on
this failed to materialise. Nevertheless, the piezoelectric effect was exploited in surface
acoustic wave (SAW) devices.

A second revolution was seeded by Esaki and Tsui in 1970 through their idea of Bloch
oscillations in a superlattice, but its fruition had to await the development of planar
technology, particularly molecular-beam epitaxial growth. Since around 1980 the ability
to precisely control the layer thickness down to atomic dimensions has encouraged a whole
new family of devices, both electronic and optical, based on the quantum confinement
of electrons in quasi-low-dimensional structures. This gave rise to the discovery of new
effects, such as the real-space-transfer mechanism for NDR (Hess et al., 1979) and the
quantum Hall effect. The quantum Hall effect discovered by von Klitzing (1980), for which
he was awarded the Nobel Prize in 1985, has lead to a standard of resistance based purely
on two fundamental constants (h/e2 = 25.805kΩ). The ability to fabricate mesoscopic
structures (those with dimensions intermediate between microscopic elements, such as
atoms, and macroscopic elements) has allowed the investigation of fundamental quantum
transport (albeit at temperatures in the milikelvin range) in which the wavelike properties
of the electron become observable in ballistic conductors. Quantized conduction and the
Aharonov-Bohm effect have been observed and single electron effects (Coulomb blockade)
have been seen in quantum dots. Nobody is sure yet whether any of this has any bearing
on practical devices, though it is clear that as device dimensions shrink the standard
classical drift-diffusion analysis pioneered by Shockley to describe transport is no longer
adequate.

Another line of research bearing on large area electronics (LAE) was the investigation
of amorphous semiconductors by Mott and others, particularly at Cambridge, for which,
inter alia, Mott won the Nobel Prize in 1977. Apart from the current application to solar
cells there is considerable promise for cheap and easily fabricated transistors based on
amorphous semiconductors.
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3. Processes

The development of semiconductor devices could not have proceeded coherently with-
out the establishment of an understanding of the fundamental physical processes involved
in their operation. Many scientists in many fields of semiconductor physics were involved
in this activity a few being theoreticians, spectroscopists, crystal growers among many
others, and to pick out a few names is somewhat invidious. The highlights picked out
below are just those that reflect the author’s personal bias and need not be thought of
as in any way definitive.

Perhaps the most fundamental property of a semiconductor is its bandstructure. Using
the so-called empirical pseudopotential method Philips and Cohen and their co-workers
during the sixties calculated the bandstructures of Ge, Si and other semiconductors,
which provided a firm basis on which to build other electronic properties. Chemical
trends, illuminated by Phillips and van Vechten, provided a more global understanding
of bandstructure than could be provided by the contemplation of individual numerical
calculations.

Equally fundamental for the operation of electronic devices is charge transport which
led to such questions as: what determines the mobility of carriers, their lifetime and the
behaviour at high electric fields? Not surprisingly, given the state of early material, the ef-
fect of impurities and dislocations were tackled first. Rutherford scattering was adapted
to describe charged-impurity scattering by Conwell and Weisskopf and by Brooks and
Herring resulting in their well-known formulae, and Read described dislocation scatter-
ing. Shockley and Read gave an analysis of the lifetime of carriers excited by light and
influenced by impurity states in the energy gap. But even in pristinely pure material
there is still a source of resistance in the form of lattice vibrations. Bardeen and Shock-
ley introduced the important concept of the deformation potential to describe acoustic
phonon scattering and Shockley showed how this type of scattering led to non-ohmic
behaviour at high electric fields. Later, Harrison extended the deformation potential idea
to optical phonons, and Reik and Risken could then solve the Boltzmann equation and
describe in detail hot-electron behaviour in Ge. As GaAs entered the fray it became
necessary to account for polar scattering and, fortunately, this had already been done by
Fröhlich for optical modes. Piezoelectric scattering was analysed by Meyer and Polder
at the Philips Laboratory in Eindhoven. An important criterion in any electronic device
is its breakdown field and the description of breakdown via impact ionization occupied
a number of theorists (and still does). Shockley’s idea that impact ionization was due
to lucky electrons, that is those that escaped all collisions, was shown not to be viable
by the numerical work of Kane and Baraff and it was only many years later that it was
shown by Ridley that the essential feature was the lucky-drift electron, one that suffered
momentum-relaxation without appreciable energy relaxation. If the problem of break-
down was solved for small-and moderate-bandgap semiconductors it has reemerged for
large-bandgap materials like AlN, GaN and ZnS.

There are many other topics worth mentioning- - -deep-level impurities, growth mech-
anisms, thermoelectric effects, non-linear electronic and optoelectronic effects, organic
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semiconductors among many, many others, space forbids further exposition. It is never-
theles clear that the whole field exhibits relation between fundamental physics and device
technology.

4. The future

Predicting activity in the field of semiconductor physics and technology in the near
future is relatively safe so I conclude with the following list of areas and fruits they might
bare, in no particular order:

1. Large-bandgap semiconductors for high-power devices and visible lasers;

2. Amorphous semiconductors for large area electronics;

3. Organic semiconductors;

4. Exploitation of quantum phenomena in quantum computing;

5. Quantum devices;

6. Molecular engineering for smaller, faster devices.

The show is set to run and run!
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