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Abstract

An analytical solution to the Schrödinger equation for a multiple quantum well
system subjected to an externally applied electric field the growth direction and an
externally applied tilted magnetic field are obtained and the results are discussed.
The energy dependence energy spectrum of the system as a function of the external
electric field and the orbit center is also discussed.

1. Introduction

In order to study a two-dimensional electron gas in heterosystems, an external mag-
netic field is often applied parallel, perpendicular or at an angle to the growth direction.
For the first case, that is when a constant homogeneous magnetic field is applied parallel
to the growth direction of a two-dimensional heterostructure, the Landau levels of the
confined electrons are formed and the energy spectrum becomes discreate giving rise to
an extensively studied yet interesting effect such as the Quantum Hall Effect (QHE), and
Shubnikov de Haas ossillations (SdH) [1,2]. In this case, since the magnetic field is in
the same direction as the confining electric field, the Hamiltonian can be easily seperated
into an electric part leading to subbands and a magnetic part leading to Landau levels.
Also, Lee at al. have investigated the situation when an externally applied magnetic field
is parallel to the layers [3]. Although an in-plane magnetic field usually has little effect
on the two-dimensional properties since the z motion in the confining potentional is only
slightly perturbed, it can strongly affect the spectrum of intersubband optical transition
[4].

In a parabolic potential well eigenenergies of two-dimensional electrons subjected to
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a tilted magnetic field have been solved analytically by Maan [5]. This solution was
utilized as a good approximation in analysing the experimental findings of transport
measurements of these structures. In this paper we have studied the energy spectrum
of an electron for different orientations (θ = 0 and θ = 18) of the magnetic field while
keeping the electric field parallel to the growth direction. The application of successive
transformations makes the Hamiltonian separable in terms of the new coordinates [6].
The general solution goes smoothly approaches the results of the two limits where the
magnetic field is either parallel or perpendicular to the layers while the electric field
is applied to the growth direction as mentioned above. Thus, we can completely solve
the Schrödinger equation using multiple (four) square wells potentials as the confining
potential and obtain analytical solutions without making any approximations for two-
dimensional semiconductor heterostructures under externally applied electric and tilted
magnetic fields.

2. Theory

We consider multiple (four) quantum wells of width L and potential height Vo in
an externally applied constant uniform magnetic field B in the (x − z) plane, B =
(xB cos θ, 0, zB sin θ), where θ is the angle between the direction of B and the x-axes
(Figure 1). The magnetic field can be described by the vector potantialA = (0, xB sin θ−
zB cos θ, 0), where the gauge is considered as ∇ ·A = 0. The Hamiltonian of an electron
in such a system can be written in SI units as

H =
1

2µ
(p+ eA)2 + V (z), (1)

where µ is the effective mass of the electron and V(z) is the potential energy of the
electron in the well which includes the electric field term eFz. A schematic representation
of V(z) is given in Figure 1.
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Figure 1. Schematic representation of the potential well and the directions of axes and exter-

nally applied magnetic field B.
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For the present case the functional form of V(z) is

V (z) = V0

∑[
S(zLi − z) + S(z − zRi) − S(z − zLi+1

]
+ eFz, (2)

where S is step function, and left and right boundaries of the wells are located at Z = ZLi ,
and Z = ZRi in the ith well and Z = ZLi+1 in the (i + 1)th well, respectivelly. Making
use of the translational symmetry in the y-direction, the wavefunction of the system can
be written as Ψ(r) = exp(ikyy)ϕ(x, z), and by using the vector potential we can rewrite
the Hamiltonian of the system as

H =
1

2µ
(p2
x + p2

z) +
1

2µ
[~ky − eB(z cos θ − x sin θ)]2 + V (z). (3)

By using the point canonical transformation(
z′

x′

)
=
(

cos θ − sin θ
sin θ cos θ

)(
z
x

)
, (4)

where the magnetic field B coincides with the x-axes, the Hamiltonian of the system can
be written as;

H =
p2
x′ + p2

z′

2µ
+

1
2
µω2(z′0 − z′)2 + V (x′, z′), (5)

where we have used ω = eB/µ for the cyclotron frequency, z′0 = ~ky/eB = a2
Hky for the

position of the orbit center, and aH = (~/µω)1/2 for the magnetic length. In order to
decompose the potential energy V (x′, z′) we rewrite the step functions in Equation (2)
as follows:

S(ZLi − z) = Cos2θS(z′Li − z
′) + Sin2θS(x′Li − x

′);

S(Z − ZRi ) = Cos2θS(z′ − z′Ri ) + Sin2θS(x′ − x′Ri); (6)

S(Z − ZLi+1 ) = Cos2θS(z′ − z′Li+1
) + Sin2θS(x′ − x′Li+1

);

By considering the above equations we can separate the potential as

V (x′, z′) = V (x′) + V (z′), (7)

where

V (x′) = V0 sin2 θ
∑
i

[
S(x′Li )− x

′ + S(x′ − x′Ri)− S(x′ − x′Li+1
)
]

+ eF sin θx′;

(8)

V (z′) = V0 cos2 θ
∑
i

[
S(z′Li − z

′ + S(z′ − z′Ri) − S(z′ − z′Li+1
)
]

+ eF cos θz′;
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Consequently we can decompose the Hamiltonian of the system as;

H = Hx′ + Hz′ (9)

By using u = z′0 − z′ and the dimensionless variables ũ = (
√

2/aH)u, Ẽz′ = Ez′/~ω, and
Ṽ0 = V0/~ω. Hence the Schrödinger equation corresponding to the z’-motion becomes

d2φ(ũ)
dũ2

+ (−1
4
ũ2 − Ṽ0 cos2 θS[ũ] + Ẽz′ − α̃0 + β̃ũ)φ(ũ) = 0, (10)

where

S[ũ] =
{
S(ũ − ũLi) + S(ũRi − ũ)− S(ũ − ũLi+1 )

}
(11)

and α̃0 = eFaH√
2~ωc

cos θz̃′0 and β̃ = eFaH√
2~ωc

cos θ. If we shift to normalized coordinate ũ by

an amount of −2β̃, ζ̃ = ũ− 2β̃ the Schrödinger equation is written in the new coordinate

d2φ(ζ̃)
dζ̃2

+
[
(m+

1
2

) − 1
4
ζ̃2

]
φ(ζ̃) = 0. (12)

The solution corresponding to the z’-motion is given by the well-known Weber functions
Dm(ζ̃) [7]. The quantum numbers m and m’ are related to each other by (m −m′) =
Ṽ0 cos2 θ.

3. Results and Discussion

We use the following parameters in this paper:
V0 = 410 meV, Ṽ0

∼= 11; Lw = 39.2Å, L̃w ∼= 1; Lb = 11.2Å, L̃b ∼= 0.286; aH ∼= 57Å,
~ω = 37.29 meV and B=20 Tesla and F = 5× 10∧4 V/cm.
The well width is comparable to the magnetic lenght and the energy levels are quantized
by the combined effects of spatial confinement that are barriers of the quantum wells
and Landau levels. Consequently, the orbital motion of electrons is reflected by both
potential barriers of each quantum well and energy levels with energy smaller than the
barrier height are spatially localized. In Figure 2 the numerical solutions of Energy (Ez′)
are plotted versus the position z̃′0 of the orbit center for different values of θ which defines
the angle between the direction of the magnetic field B and x-axes. These results clearly
show two different types of energy states: the states confined in the quantum well (the
lowest level in Figure 2 (a),(b),(c),(d)), and extended states (the higher levels in Figure
2. (a(,(b),(c) and (d)).When the energy of the lower states are less than the height of the
potential the particles are considered to be mostly localized in well regions. For higher
states we begin to see the domination of bulk Landau levels at larger z̃′0 values due to
the higher energy and larger cycloid radius.

814
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Figure 2.(a) electronic structures of the po-

tential well under a magnetic field for a tilt

angle θ = 0 and electric field strength F=0

Figure 2.(b) electronic structures of the po-

tential well under a magnetic field for a tilt

angle θ = 18◦ and electric field strength F=0.

Figure 2.(c) electronic structures of the po-

tential well under a magnetic field for a tilt an-

gle θ = 0 and electric field strength F = 5×104

V/cm.

Figure 2.(d)(d) electronic structures of the

potential well under a magnetic field for a tilt

angle θ = 18◦ and electric field strength F =

5× 104 V/cm.
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Conclusion

In summary, we present the solution of the Schrödinger equation of a square well
potential problem under the influence of an externally applied tilted magnetic field by
making the Hamiltonian separable via a substitution followed by a orthogonal transfor-
mation. Then, we discuss the energy of the system as a function of tilted parameter θ
and the center of the cycloid orbit center of the electron. Where we find that in both
limits of θ the results are in complete agreement with that of previous work found in
literature. It is also found that if the orbit center is moved far away from the quantum
well the usual bulk Landau levels take over with a shift of Veff in energy.

Figure 3. Potential profiles at the z′0 = 0
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