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Exchange-Correlation Effects in the Impurity-Limited

Mobility of GaAs Quantum Wires

Bilal TANATAR
Bilkent University, Department of Physics,

06533 Ankara-TURKEY

Received 01.03.1999

Abstract

We study the many-body effects described by the local-field corrections on the
mobility of quasi-one dimensional electron systems. The low temperature mobil-
ity due to remote-impurity doping and interface-roughness scattering is calculated
within the relaxation time approximation. We find that correlation effects signifi-
cantly reduce the mobility at low density.

1. Introduction

Recent advances in microfabrication techniques have provided the realization of quasi-
one-dimensional (Q1D) electronic structures[1] in which the free motion of electrons take
place in only one spatial direction. Such systems are thought to offer interesting device
possibilities because of the reduced phase space available to the charge carriers. At the
same time, the Q1D electronic structures can also be used as a testing ground for our
understanding of the many-body interactions[2] in low-dimensional systems, since most
experimental efforts[3] are devoted to measure these effects. In this work, we study
the effects of exchange and correlation on the mobility of quantum wire systems due to
impurity scattering. Impurity effects are important for device applications.

Mobility limits for charged impurity scattering in Q1D systems have been considered
by Sakaki,[4] Fishman,[5], Lee and Spector,[6] and Gold and Ghazali[7] within various
approximation schemes. Numerical calculations for the mobility of Q1D electron systems
are also provided.[8] Screening effects play an important role in the transport properties
of low-dimensional electronic structures. They are usually treated within the random-
phase approximation (RPA). Our aim is to explore the density dependence of the mobility
for different impurity scattering mechanisms in a theoretical model which goes beyond
the RPA. We have shown that the correlation effects significantly reduce the low density
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mobility of quantum wires.[9] This paper summarizes our main results and discusses
further developments.

2. Model and Theory

We use a model of the Q1D electron gas consisting of a cylindrical quantum wire of radius
R with infinite potential barrier. The Coulomb interaction among the electrons assumed
to be in the lowest subband is calculated by

V (q) = (2e2εs)
∫
d2r

∫
d2r′ |φ(r)|2K0(q|r − r′|) |φ(r′)|2 , (1)

where φ(r) is the ground-state wavefunction and K0(x) is the modified Bessel func-
tion of the second kind. The many-body effects are described by the screening function
εt(q, ω) = 1−V (q)[1−G(q)]χ0(q, ω), where G(q) is the so-called local-field correction[10]
and χ0 is the dynamic susceptibility of the noninteracting system. For instance, the collec-
tive excitations (plasmons) of the system are calculated from the solution of εt(q, ω) = 0.
When we set G(q) = 0, we recover the familiar random-phase approximation (RPA).
In this work we employ the local-field corrections numerically obtained by Calmels and
Gold[11] for an extensive range of radius and density values. In general, the disorder
effects will modify the screening function but we neglect them in the lowest order approx-
imation. We shall later discuss the possible improvements of including the correlation
and disorder effects on an equal footing.

Gold and Götze[12] have developed a self-consistent theory of electron dynamics which
take the exchange-correlation and disorder effects into account. Within this approach, the
relaxation time defined as the imaginary part of the memory function at zero frequency,
is given by

1
τ (ω = 0)

=
1
nm

∑
q

q2 〈|U(q)|2〉
εt(q)2

φ
′′

0 (q, 0) , (2)

from which the the mobility may be calculated using µ = eτ (0)/m. This expression is
a special case of the mode-coupling approximation to the more general memory func-
tion describing the relaxation phenomena.[12] Using the lowest order relaxation function
φ0(q, z) = [χ0(q, 0)−χ0(q)]/z, where χ0(q, z) and χ0(q) are the dynamic and static suscep-
tibilities, respectively, we obtain φ

′′

0 (q, 0) = 2πρFmkF δ(q−2kF )/q2. Here ρF = 2m/πkF
is the density of states on the Fermi level of a 1D electron gas. Finally, the momentum
relaxation time takes a simple form

1
τ

=
kF
EF

〈|U(2kF )|2〉
εt(2kF )

. (3)

In our calculations we use the finite temperature formalism[2, 13] so that εt(2kF ) does
not have any divergent behavior.
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3. Results and Discussion

We use the material parameters appropriate to GaAs (i.e. the effective mass of electrons
is m = 0.067me, where me is the bare electron mass and the static dielectric constant
is εs = 13) in the subsequent calculations. For the scattering by remote impurities, we
assume that the impurities are located randomly at some distance Ri from the axis of
the quantum wire of radius R. The averaged random potential is written as 〈|U(q)|2〉 =
NiV

2
imp, where Ni is the linear impurity density. Vimp(q) is evaluated at the impurity

positions Ri using

Vimp(q) = −(2e2/εs)
∫
d2r |φ(r)|2K0(q|r − Ri|) . (4)

The mobility for remote doping finally takes the form

µRD =
(
ea2
B

~

)
π

16
N

Ni

εt(2kF )2

Fimp(2kF )2
, (5)

Figure 1. Mobility for remote doping as a function of electron density. The solid and dashed

lines represent calculations with and without the local-field corrections, respectively. Curves from

bottom to top are for Ri = 0, 1, 2, and 4R. The dotted lines correspond to HF approximation.

where we have used Vimp = (2e2/εs)Fimp. In Figure 1 we show the mobility due to remote-
impurity doping with (solid lines) and without (dashed lines) the local-field correction
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for various impurity locations. The local-field factor G enters the calculation through εt
and in the case of RPA we set G = 0. We take the impurity density to be Ni = 106 cm−1

and the quantum wire radius R = aB . The low density (N < 5 × 105 cm−1) mobility
decreases substantially when the local-field effects are taken into account. Densities lower
than 5 × 104 cm−1 are unrealistically low and the form of the local-field factors we use
may not be applicable. As the electron density increases mobility approaches to the RPA
limit indicating that the local-field corrections are no longer important. The dotted lines
show µRD calculated within the Hartree-Fock (HF) approximation which includes only
the exchange effects. This means the screening function εt is evaluated within the HF
approximation. We observe that exchange effects already reduce the mobility from its
RPA value. Correlation effects result in a further reduction.

Interface-roughness scattering is known to be the dominant scattering mechanism for
2D electrons in thin quantum wells. We expect similar behavior in quantum wire systems.
Adopting the model of Gaussian decay of the roughness fluctuations[14] we obtain for the
random potential 〈U(q)|2〉 = (dE1/dR)2ηδ2π1/2e−q

2η2/4, where δ and η are the height
and range parameters, respectively of our model, and E1 ∼ 1/R2 is the first subband
energy. The mobility due to interface-roughness becomes

µIR =
(
ea2
B

~

)
π1/4

4
R6Nek

2
F η

2

β4
1ηδ

2a2
B

εt(2kF )2 . (6)

The mobility due to interface-roughness scattering as a function of the electron density
for a GaAs quantum wire of radius R = aB and average roughness fluctuation size δ = 3 Å
is in Figure 2. The solid and dashed curves indicate results with and without the local-
field corrections, respectively. The upper and lower curves are for the range parameters
η = 20 Å and η = 60 Å. We observe that µIR is strongly reduced for N < 3 × 105 cm−1

when the correlation effects are included.

Recently, Thakur and Neilson[15] have considered an improvement of our method of
calculating the impurity-limited mobility. They have considered the interaction effects in
the relaxation function φ(q, z) which is approximated by the free-particle value φ0. This
allowed them to treat the correlation and disorder effects on an equal footing within a
self-consistent scheme. They have found situations where the mobility drops toward zero
and the mean free path becomes of the order of the average electron spacing correspond-
ing to strong localization. This opens new possibilities to study the localization effects,
especially in relation to strong correlations, in low-dimensional systems. Recent obser-
vation of a metal-insulator transition in 2D electron systems at zero magnetic field[16]
indicates interesting directions to pursue.
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Figure 2. Mobility for interface-roughness scattering as a function of electron density. The solid

and dashed lines represent calculations with and without the local-field corrections, respectively.

Top and bottom curves are for η = 20 Å and η = 60 Å, respectively.

In this work we have studied the influence of many-body effects on the impurity-limited
mobility of semiconductor quantum wire systems. The local-field corrections embodying
the exchange-correlation effects are used to calculate the mobility due to remote doping
and interface-roughness scattering. In contrast to the usually employed RPA, we found
that correlation effects significantly reduce the mobility at low densities.

This work was supported by the Scientific and Technical Research Council of Turkey
(TUBITAK) under Grant No. TBAG-1662.
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