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Abstract

The analytical theory of hot electrons interacting with lattice vibrations, impuri-
ties, and interface roughness in quantum wells is developed. We have obtained new
distribution functions which describe all the kinetic properties of the non-equilibrium
electron gas. As a specific example we present the electric field dependence of the
electron mobility in GaN-based quantum wells and in bulk GaN. The relative im-
portance of the different scattering mechanisms is analysed in detail.

1. Introduction and formulation of the problem

The direct large-bandgap semiconductors like GaN are ideally suited for use in both
electronic and optoelectronic devices as well as for combined applications. The desire to
improve device performance has fuelled theoretical and experimental investigation of the
optical and transport properties of these materials. Several GaN-based heterostructures
have been grown recently and, with improving techniques, good quality GaN/GaAlN
quantum wells (QW) will, no doubt, be produced in which the scattering of the electrons
by the lattice vibrations is the dominant mechanism. A particularly important feature of
these structures is doping which is a necessary stage in the sample preparation process in
order to optimise carrier density. It is this feature that makes the study of the interactions
of electrons with phonons and impurities in bulk GaN and GaN-based quantum wells of
considerable importance.

Previous investigations of electron scattering phenomena in GaN were performed
mostly for the equilibrium state of the electron system. Such a type of investigation
gives a clear insight into the underlying physics and sheds light on the relative signifi-
cance of different scattering mechanisms. It does lead to the prediction of the effect of
lattice temperature, impurity doping, electron confinement, etc., on the linear electron
transport in the systems in question. The linear response approximation with respect to
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an external electric field greatly simplifies the problem because the appropriate electron
energy distribution is then given by the equilibrium Maxwell-Boltzmann or Fermi-Dirac
distribution function. The linear regime is thus applicable strictly only to the case of
weak electric fields. On the other hand, the advent of high field electronic devices has ne-
cessitated the construction of an adequate theoretical framework for the non-equilibrium
carrier dynamics of such devices. There are some purely numerical studies employing
Monte Carlo techniques to model the non-equilibrium processes in the electron system
of GaN. Such studies, by their nature, do not provide insight into the underlying basic
physics. The main reason for resorting to numerical analysis stems from the difficulties
of solving analytically the Boltzmann kinetic equation to obtain the electron distribution
function appropriate at high electric fields. It should be noted that these difficulties occur
for electron gases with high as well as low concentrations. At high electron concentrations
one often uses the electron temperature approximation to solve the Boltzmann equation.
But this approximation is not universally valid in the presence of polar optical scattering.
The corresponding analysis for electrons in bulk materials [1] and in quantum wells [2]
reveals very severe restrictions on the applicability of the electron temperature approx-
imation. At low electron concentrations, on the other hand, the problem of finding the
non-equilibrium distribution function can be tackled analytically in bulk materials for
some practically important cases of electron transport [3]. This problem is much more
complicated for electrons in low-dimensional systems with a quantized energy spectrum,
especially if a few subbands are involved and it is necessary to solve a system of coupled
Boltzmann equations [4].

In this paper we present the first theoretical analytical study of transport phenomena
in bulk GaN as well as in GaN-based quantum wells under non-equilibrium conditions.
The important feature of our theory is that it explicitly takes account of the many-
subband electron population. We also assume that the electron average energy ε̄ and
the lattice temperature T satisfy the conditions, (k0T, ε̄) < ~ω0, where ~ω0 is the optical
phonon energy. These conditions impose an upper limit on both the external electric
field E and the lattice temperature T. Since for GaN the optical phonon energy is large,
~ω0 ≈ 1100 K, the condition can be satisfied within a wide range of actual E and T.
Our recent investigation [5,6] of the electric field dependence of carrier mobility in low-
dimensional structures has shown a non-monotonous behaviour and the dependence is
characterised by a change in gradient when the scattering by the deformation acoustic
(DA) phonons is more important than that by the piezoacoustic (PA) phonons. Here we
take into account besides the DA and PA phonons also the interaction with polar optical
(PO) phonons, background (BI) and remote impurities (RI), and with the QW interface
roughness (IR). In our analysis the electron gas is assumed to be non-degenerate. This
condition is not consistent with the electron temperature approximation. On going be-
yond the electron temperature approximation, we have obtained a set of new distribution
functions for non-equilibrium electrons in GaN-based quantum wells with many electron
subbands included. Our theory predicts novel non-linear regimes of transport phenom-
ena in quantum wells and it provides a self-consistent transition from the two-dimensional
(2D) regime to the three-dimensional (3D) regime of electron transport with increasing
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electric field accompanied by the occupation of increasingly large number of subbands by
the electrons.

2. The Boltzmann kinetic equation and the momentum relaxation times of
2D electrons

We consider here a 2D electron gas confined in a square infinitely deep AlN/GaN
QW of thickness L subject to an external electric field ~E parallel to the QW layers. The
energy spectrum of the electron with in-plane wavevector ~k‖ in subband n is εn(~k‖) =
~2k2
‖/2m

∗ + W0n
2 with n = 1, 2, . . . and W0 = π2~/2m∗L2, m∗ is the electron effective

mass. In order to calculate the kinetic coefficients of the non-equilibrium electron gas it
is necessary to know the electron distribution function Fn(~k‖) which is governed by the
Botzmann kinetic equation

−e
~E

~
dFn(~k‖)

d~k‖
= ÎFn(~k‖), (1)

where ÎFn(~k‖) is a scattering operator which describes the interaction between electrons
and the scatterers.

For interaction with the bulk-like phonons with wave vector ~q = (~q‖, ~k⊥) and frequency
ωλ(~q) we have

ÎFn(~k‖) =
3∑
i=1

ÎFn(~k‖) =
3∑
i=1

∑
n′

∑
~q

wi(~q)G2
nn′(q⊥)×

{[
Fn′(~k‖ + ~q‖)(N~q + 1)− Fn(~k‖)N~q

]
δ
(
εn′(~k‖ + ~q‖) − εn(~k‖)− ~ωλ(~q)

)
+ (2)[

Fn′(~k‖ − ~q‖)N~q − Fn(~k‖)(N~q − 1)
]
δ
(
εn′(~k‖ − ~q‖)− εn(~k‖) + ~ωλ(~q)

)}
Here wi(~q) is the scattering probability due to interaction with DA (i=1), PA (i=2), and
PO (i=3) phonons, N~q is the phonon distribution function, the phonon frequency ωλ(~q) =
sλq for acoustic phonons (sλ is the longitudinal (λ = L) or transverse (λ = T ) acoustic
velocity) and ωλ(~q) = ω0 for optical phonons, G2

nn′(q⊥) =
∣∣∣(2/L)

∫ L
0 e−iq⊥z sin(nπz/L)

sin(n′πz/L)dz|2 is a form-factor. The scattering probabilities wi(~q) are equal, respec-
tively: w1(~q) = (πE2

a/ρV0sL)q, w2(~q) = (πe2h2
14/ρV0sT )Cλ(~eq)q−1, w3(~q) = (4πe2ω0/V0)(

ε−1
∞ − ε−1

0

)
, where Ea is the deformation potential constant, h14 is the piezoelectric

constant, ε0, ε∞ are the low and high frequency dielectric constants, ρ is the material
density, V0 is the volume of the QW and ~eq = ~q/q. The scattering probability w2(~q) by
PA phonons depends in general on the orientation of ~q with respect to the crystal axes [7]
through the factor Cλ(~eq) and on the crystal structure of GaN (zinc-blende or wurtzite).
As a result w2(~q) for 2D electrons in a QW depends on the orientation of the interfaces of
the quantum well with respect to the crystal axes. Here we use the PA-isotropy model in
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which it is assumed that for a cubic crystal CL(~q) = 0 and CT (~q) = 1. Thus our results
are more relevant to zinc-blende than the wurtzite structure of GaN.

For interaction with background impurities (BI) (i=4), remote impurities (RI) (i=5),
and QW interface roughness (IR) (i=6), all of which are elastic, the scattering operator
is given by

ÎiF
−
n (~k‖) =

∑
n′

∑
~q‖

[
wi(~q‖)G

(i)2

nn′ (~q‖)
[
F−n′(~k‖ + ~q‖)− F−n (~k‖)

]]
δ
(
εn′(~k‖ + ~q‖)− εn(~k‖)

)
,

(3)

where w4,5(~q‖) =
(
4π2nse

4/A0ε
2
0

)
~q−2
‖ , w6(~q‖) =

(
π5~4∆2Λ2/A0m

∗L6
)
e−

~q2‖Λ
2

4 , and the

form-factors are G
(4,5)2
nn′ (~q‖) =

∣∣∣ 2
L

∫ L
0 e−q‖|z−zd| sin(nπz/L) sin(n′πz/L)dz

∣∣∣2, G(6)2

nn′ = 1.
Here ns is a sheet impurity density, A0 is the interface area; ∆ and Λ are respectively the
average height and correlation length of the interface roughness fluctuations and zd is a
position of the remote (|zd| > L/2) impurities. For background impurities zd is integrated
over space.

In order to solve Eq.(1) we present Fn(~k‖) as the sum of a symmetric F+
n (εn) and

an antisymmetric F−n (~k‖) function, Fn(~k‖) = F+
n (εn) + F−n (~k‖). The action of the scat-

tering operator on the antisymmetric part of the distribution function is described by
the electron momentum relaxation time, which is usually introduced by means of the
equation

ÎiF
−
n (~k‖) = − 1

τ
(i)
n (εn)

F−n (~k‖) (4)

In the case of the 2D electron gas the problem is that in general the antisymmetric
operator is described by a set of the relaxation times which correspond to intersubband
and intrasubband scattering. This results in a coupling between different subbands in
Eq.(1) which, in fact, becomes a system of the integro-differential equations. Our analysis
of ÎiF−n (~k‖) in Eqs.(2), (3) reveals the following important features which drastically
simplify following solution of Eq.(1):

(i). Acoustic phonon scattering. If the lattice temperature T is not very low, k0T >√
8m∗s2

LW0, then one can treat the electron-phonon interaction as quasielastic and the
antisymmetric operator can be written as

ÎiF
−
n (~k‖) = −

∑
i=1,2

∑
n′

(
Γ−i /k‖

) [
F−n (~k‖)A

(i)
nn′(k‖)− F

−
n′(~k‖)B

(i)
nn′(k‖)

]
, (5)

where

A
(i)
nn′(k‖) =

∫
dq‖√

1− ϕ2
nn′(q‖)

∫ +∞

−∞

G2
nn′(q⊥)dq⊥

[q2
‖ + q2

⊥](i−1)
, (6)
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B
(i)
nn′(k‖) =

∫
[1− (q‖/k‖)ϕnn′(q‖)]dq‖√

1− ϕ2
nn′(q‖)

∫ +∞

−∞

G2
nn′(q⊥)dq⊥

[q2
‖ + q2

⊥](i−1)
, (7)

and Γ1 = ~/2πm∗λa, Γ2 = k0T/π~sT τp. Here λa = π~4ρs2
L/m

∗2E2
ak0T is a bulk electron

mean free path due to DA phonon scattering and τp = 2πρ~2sT /m
∗e2h2

14 is a character-
istic scattering time for the bulk material due to PA phonon scattering. The domain of
integration for q‖ in Eqs. (6) and (7) is defined by the condition |ϕnn′(q‖)| ≤ 1, where
ϕnn′q‖ = q‖/2k‖ − (2k‖/q‖)(n2 − n′2)W0/4ε‖ and ε‖ = ~2k2

‖/2m
∗ is the electron kinetic

energy in subband n. For DA phonons we obtain A
(i)
nn′(k‖) = 2π2

L k‖
(
1 + 1

2δnn′
)

and
B

(i)
nn′(k‖) = 0. For PA phonons a numerical estimation of the integrals in Eqs. (6), (7)

shows that only the intrasubband terms (n′ = n) are important. This behaviour can be
traced to the q-dependence of the integrals in Eqs.(6) and (7). It is a consequence of
the 1/q2 factor in these equations since intersubband scattering requires a larger phonon
wave vector in comparison with intrasubband scattering. Thus for PA phonon scattering
we may neglect the intersubband terms (n 6= n′) in Eq.(5).The remaining intrasubband
contribution in Eq.(5) has the form ÎiF

−
n (~k‖) = −

(
Γ−2 /k‖

)
F−n (~k‖)

[
A

(2)
nn(~k‖)− B(2)

nn (~k‖)
]
.

The coefficients A(2)
nn(~k‖) and B

(2)
nn (~k‖) depend very weakly on the value of n since the

form-factor G2
nn′(q⊥) has the main maximum at q⊥ = 0 for all n. At ε‖ � W0 we

obtain
[
A

(2)
nn(k‖) −B(2)

nn (k‖)
]
≈ 2π. As ε‖ increases the difference

[
A

(2)
nn(k‖) −B(2)

nn (k‖)
]

decreases slowly, but one can ignore this change for larger ε‖ due to the factor Γ−2 /k‖ ∝
1/√ε‖ the PA phonon scattering dominates at ε‖ �W0. At higher energy the DA phonon
contribution in Eq. (5) is more important than the PA phonon contribution. Finally, the
antisymmetric operator due to acoustic phonon scattering has the form in Eq.(4) with
the following momentum relaxation times: 1

τ
(1)
n (εn)

= π~
m∗Lλa

[
Z(εn) + 1

2

]
for DA phonons,

where Z(εn) = int
[
(εn/W0)1/2

]
, and 1

τ
(2)
n (εn)

= 1
τp

2k0T0√
2m∗s2

T
ε‖

for PA phonons.

(ii). Polar optical phonon scattering. If the condition k0T � ~ω0 is satisfied then only the
absorption of the PO phonons should be taken into account. When an electron absorbs
a phonon, it emits it almost instantaneously since the emission to the absorption time
ratio is τem

τab
≈ N0

N0+1 ≈ e
− ~ω0
k0T � 1. In this process the electron energy remains almost

unchanged, but the momentum changes drastically. Calculation in Eq. (2) shows that
the intrasubband PO phonon scattering dominates over intersubband scattering and the
antisymmetric operator has the form in Eq. (4) with a momentum relaxation time which

is almost independent of the electron energy: 1

τ
(3)
n (εn)

= 3
√

W0
~ω0

N0
1
τ0

(iii). Background and remote impurity scattering. Integration in Eq.(3) shows that here
again only intrasubband terms are important because for intersubband terms q‖ is large
and the form-factor is exponentially small. The momentum relaxation times are similar
to [7,8]: 1

τ
(4)
n (εn)

= πe4NIL
ε2
0~ε‖

[
π − 1

2k‖L
ln
(√

1 + b0 − b0
)]

for background impurities, where

b0 = ε0ε‖/e
2N

1/3
I and NI is the bulk impurity density, and 1

τ
(5)
n (εn)

πe4Ns
ε2
0~ε‖

[I0(4k‖zd) −
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L0(4k‖zd)] for remote impurity scattering, where Iv(x) and Lv(x) are modified Bessel
and Struve functions, respectively.
(iiii). Interface roughness scattering. For this scattering the intersubband terms are equal
to zero and the momentum relaxation time due to intrasubband scattering is calculated
similar to [9] as 1

τ
(6)
n (εn)

= π5∆2Λ2~
m∗L6 e−k

2
‖Λ

2/2
[
I0(k2

‖Λ
2/2)− I1(k2

‖Λ
2/2)

]
.

Substituting the momentum relaxation time approximation from Eq. (4) in Eq.
(1) we obtain a solution of the Boltzmann equation for the antisymmetric distribu-
tion function in the form F−n

~k‖) = (e~/m∗)τn(εn)(~k‖ ~E)dF+
n (εn)/dεn, where the total

momentum relaxation time including all scattering mechanisms is defined as τn(εn) =λa/√2W0/m∗
χn(εn) with χn(ε) =

[
(z(ε) + 0.5) +

λa/√2W0/m∗


∑6
i=2

(
τ

(i)
n (ε)

)−1
]−1

.

3. The energy distribution function of 2D electrons

The electric field dependence of the electron kinetic coefficients is described by the
non-equilibrium symmetric distribution function. In order to find this function from
the Boltzmann equation it is necessary to calculate the symmetric part of the scattering
operator using Eq. (2). In this equation only interaction with DA and PA phonons should
be taken into account. Using an approach similar to that developed in previous work [4]
we obtain

ÎF+
n (εn) =

∑
i=1,2

∑
n′

Γ+
i W0

d

dεn

{[1 +
1
2
δnn′

 εn
W0

2−i
−
1− i

2

n2δnn′

]
×

(8)[
F+
n′(εn) + k0T

dF+
n′(εn)
dεn

]}
+
∑
i=1,2

∑
n′

(
Γ−i /k‖

)
A

(i)
nn′(k‖)

[
F+
n′(εn) − F+

n (εn)
]
,

where Γ+
1 = δL(2π2/L)Γ−1 , Γ+

2 = δTLΓ−2 , and δλ = 2m∗s2
λ/k0T .

The first term in Eq.(8) describes the rate of change of the energy distribution function
F+
n (εn) due to quasielastic intra- and intersubband scattering. The second term describes

the relaxation of F+
n (εn) due to elastic intersubband scattering. The total energy of the

electron εn = ε‖ + W0 does not change if the scattering is elastic, but the kinetic energy
changes drastically if the electron undergoes intersubband scattering even if the total
energy in the initial and final states is the same.

The equation for the symmetric distribution function is greatly simplified by the pres-
ence of the second term in Eq.(8), which is larger than the first term by the inverse
quasielasticity factor δ−1

λ � 1. Retaining only this term in the kinetic equation one ob-
tains, as a first approximation, the solution F+

n′(εn) = F+
n (ε) ≡ F+(ε) i.e. the symmetric

distribution function does not depend on the subband index n [4]. The equation for
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F+(ε) follows from Eq.(1) after the substitution from Eq.(8) and summation over n. The
summation over n is necessary in order to eliminate the dependence of the coefficients in
the equation on the subband index n since the distribution function does not depend on
n. The equation obtained has the form of a continuity equation which, after integration,
gives the solution

F+(x) = A0 exp
[
−W0

k0T

∫ x

1

dx′

1 + ε2
Eα(x′)

]
, (9)

where α(x) =
∑Z(x)

n=1

(
x− n2

)
χn(x)

{
Z(x) (Z(x) + 0.5)

[
x− (Z(x) + 1) /6 + γps

2
T /2s

2
L

]}−1,
A0 is the normalization factor, x = ε/W0 and εE = eEλa/2

√
m∗s2

LW0.

4. Mobility of 2D and 3D electrons in GaN

The distribution functions obtained describe all the kinetic properties of 2D non-
equilibrium electrons in the QW and this is the central result of the paper. As a specific
example, we have performed calculations of the electron mobility µ as a function of the
electric field E for a GaN-based QW. For comparison we have also plotted the corre-
sponding dependence for bulk GaN. We have obtained the following expression for the
electron mobility of 2D electrons:

µ(E) = −eλaL
π~

∞∑
n=1

∫ +∞

n2

(
x− n2

)
χn(x)

dF+(x)
dx

/ ∞∑
n=1

∫ +∞

n2
F+(x)dx, (10)

We have used the following values of GaN parameters: m∗ = 0.15m0, Ea = 10.1eV ,
h14 = 4.24 × 107 V/cm, ε0 = 9.5, ε∞ = 5.4, ρ = 6.1 g/cm3, SL = 4.57 × 105 cm/s,
sT ≈ 0.5sL, ~ω0 = 92.8 meV. To add some imperfections we have also used the parameters
NI = 1016 cm−3 for BI scattering Ns = 1011 cm−3 and zd = L + 500Å for RI scattering
and Λ = 20Å and ∆ = 2Å for IR scattering.
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Figure 1. Low field mobility of electrons versus temperature for a GaN quantum well and bulk

GaN.

First we show in Figure 1 the low-field mobility,E → 0 as a function of temperature. This
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figure clearly demonstrates the relative importance of different scattering mechanisms.
Figure 2 shows the electric field dependence of the mobilityµ(E) at different temperatures
and well widths. It can be seen that temperature has a significant effect, not only on
the magnitude of the mobility, but it changes also the style of the dependence. At low
temperatures µ(E) is a non-monotonous function of E with a maximum which is caused
by the competition between impurity, IR and PA scattering and DA phonon scattering.
As T increases imperfections become less important and the PO phonon contribution to µ
starts to dominate. Because the momentum relaxation time due to PO phonon scattering
is almost independent on the electron energy, the mobility depends only weakly on electric
field.

Figure 2. Field dependence of the mobility of electrons for different lattice temperatures and

well widths. The lower curves for each case are for an imperfect sample including IR, RI and BI

scattering as well as phonon scattering while the higher curves include only phonon scattering.

The mobility for the imperfect 25Å well at T=100K is too small to appear.
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