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Abstract

The effects arising from accelerated and decelerated motion of charged point
particles inside a medium are studied. It is shown explicitly that, in addition to the
bremsstrahlung and Cherenkov shock wave, the electromagnetic shock wave arising
from the charge velocity exceeding the medium light velocity should be observed.
This shock wave has the same singularity as the Cherenkov one and therefore, it is
more singular than the bremsstrahlung shock wave. The space-time regions where
these shock waves exist and conditionsunder which they appear are determined.

1. Introduction

Although the Vavilov-Cherenkov effect is a well established phenomenon widely used
in physics and technology [1], many of its aspects remain uninvestigated up to now.
In particular, it is not clear how a transition takes place from the sub-light velocity
regime to the the super-light one. Some time ago [2,3] it was suggested that side by side
with the usual Cherenkov and bremsstrahlung shock waves, the shock wave associated
with the charged particle overcoming of the light velocity barrier should exist. The
consideration had been presented as pure qualitative without any formulae and numerical
results. It was grounded on the analogy with the phenomena occurring in acoustics and
hydrodynamics. It seems to us that this analogy is not complete. In fact, electromagnetic
waves are pure transversal, while acoustic and hydrodynamic waves contain longitudinal
components. Further, the analogy itself cannot be considered as a final proof. This fact
and experimental ambiguity to distinguish Cherenkov from bremsstrahlung rediation [4]
enables us to consider effects arising from the charged particle overcoming of the light
barrier in the framework of the completly soluble model.

In Ref. [5] we considered the straight-line motion of the charged particle with a con-
stant acceleration z = at2. This motion law is maintained by the following electric field
∗e-mail:afanasiev@thsun1.jinr.dubna.su
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directed along z axis:

Ez =
2ma

e(1 − 4az/c2)3/2
. (1.1)

In agreement with Refs. [2,3] we confirmed in [5] the existence of the the shock wave aris-
ing at the moment when charged particle exceeds the light velocity inside the medium.
This wave has essentially the same singularity as Cherenkov shock wave. It is much
stronger then the singularity of the bremsstrahlung shock wave. Previously, the accel-
erated motion of the point charge in a vacuum was considered by Schott [6]. Yet, his
qualitative consideration was pure geometrical, not allowing for numerical investigations.

The electric field tends to ∞ as z approaches c2/4a. This singularity complicates the
experimental verification of the shock waves arising from the charge velocity exceeding
the light velocity in medium.

Here we consider the straight-line motion of the point charge in a constant uniform
electric field and evaluate the arising electromagnetic field (EMF) which is much easier
to create than the electric field described by the electric field described by (1.1).

2. Statement of Physical Problem

Let a charged particle move inside a medium with polarizabilities ε and µ along the
given trajectory ~ξ(t). Then, its EMF at the observation point (ρ, z) is given by the
Lienard-Wiechert potentials

Φ(~r, t) =
e

ε

∑ 1
|Ri|

, ~A(~r, t) =
eµ

c

∑ ~vi
|Ri|

, div ~A +
εµ

c
Φ̇ = 0. (2.1)

Here,

~vi = (
d~ξ

dt
)|t=ti, Ri = |~r− ~ξ(ti)| − ~vi(~r − ~ξ(ti))/cn

and cn is the light velocity inside the medium (cn = c/
√
εµ). The summation in (2.1) is

performed over all physical roots of the equation

cn(t− t′) = |~r− ~ξ(t′)|. (2.2)

To preserve the causality, the time of radiation t′ should be smaller than the observation
time t. Obviously, t′ depends on the coordinates ~r, t of the point P at which the EMF is
observed. Accounting for (2.2) one gets for Ri

Ri = cn(t− ti) − ~vi(~r − ~ξ(ti)). (2.3)

Consider the motion of a charged point-like particle with rest mass m inside the medium
in a constant electric field E along the Z axis. The motion law is given by (see, e.g.,[7])

z(t) =
√
z2

0 + c2t2 − z0, z0 = mc2/E > 0. (2.4)

The charge velocity is given by

v = ż = c2t(z2 + c2t2)−1/2.
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Clearly, it tends to the light velocity in vacuum for t→∞. The retarded times t′ satisfy
the following equation:

cn(t− t′) = [ρ2 + (z + z0 −
√
z2

0 + c2t′2)2]1/2. (2.5)

It is convenient to introduce the dimensionless variables

t̃ = ct/z0, z̃ = z/z0, ρ̃ = ρ/z0. (2.6)

Then,
α(t̃− t̃′) = [ρ̃2 + (z̃ + 1−

√
1 + t̃′2)2]1/2, α = cn/c. (2.7)

In order not to overload exposition we drop the tilda signs:

α(t− t′) = [ρ2 + (z + 1−
√

1 + t′2)2]1/2. (2.8)

For the treated case of one-dimensional motion the denominators Ri are given by:

Ri =
z0

α
√

1 + t′2
[α2(t − ti)

√
1 + t′2 − ti(z + 1−

√
1 + t2i )

2]. (2.9)

We consider the following two problems:
I. A charged particle rests at the origin up to a moment t′ = 0. After that it is accelerated
in uniform electric field in the positive direction of the Z axis. In this case only positive
retarded times t′ are nontrivial.
II. A charged particle decelerates in the uniform electric field moving from z = ∞ to
the origin. After the moment t′ = 0 it rests there. Only negative retarded times are
nontrivial in this case.
It is easy to check that the moving charge acquires the light velocity cn at the moments
tl = ±α/

√
1− α2 for the accelerated and decelerated motion, resp. The position of a

charge at those moments is zl = 1/
√

1− α2 − 1.
It is our aim to investigate space-time distribution of the EMF’s arising from such particle
motions.

3. Numerical Results

We consider at first the typical case corresponding to |t| = 2.

3.1. Accelerated Motion

For the first of the treated problems (acceleration of the charge initially resting at
the origin) in the uniform electric field the resulted configuration of the shock waves are
shown in Fig. 1 ( α = 1/2).

We see on them the Cherenkov shock wave CM having the form of the Mach cone, the
surface CL closing the Mach cone and the spherical wave C0 representing the spherical
shock wave arising from the beginning of the charge motion. It turns out that the surface
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CL with a good accuracy is approximated by the part of the sphere ρ2+(z−zl)2 = (t−tl)2

(shown by the short-dash curve) which corresponds to the shock wave emitted from the
point zl = (1 − α2)−1/2 − 1 at the moment tl = α(1 − α2)−1/2 when the velocity of the
charged particle coincides with the velocity of light in the medium. On the internal sides
of the surfaces CL and CM electromagnetic potentials acquire infinite values. On the
external side of CM lying outside of C0 the electromagnetic potentials are zero (as there
are no solutions there). On the external sides of CL and on the part of the CM surface
lying inside C0 the electromagnetic potentials have finite values.

Figure 1. The distribution of the shock waves for an the accelerated charge (α = 1/2t = 2). CM
is the Cherenkov shock wave, CL is the shock wave emitted from the point zl = (1− α2)−1/2 at

the moment tl = α(1−α2)−1/2 when the charge velocity coincides with the medium light velocity.

Part of it with a good accuracy is described by the spherical surface ρ2 + (z − zl)2 = (t − tl)2

(shown by the short-dash curve). C0 is the bremsstrahlung shock wave originating from the

beginning of the charge motion.

The positions of the shock waves for different observation times are shown in Fig. 2
(α = 1/2). The dimension of the Mach cone is zero for t < tl and continuously rises with
time t > tl. The physical reason for this is that the CL shock wave closing the Mach cone
propagates with the lightvelocity cn, while the head part of the Mach cone CM attached
to the charged particle propagates with the velocity v > cn.
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Figure 2. The distribution of shock waves for an accelerated charge and α = 1/2. CL are

shock waves emitted from the points in which the charge velocity coincides with the medium

light velocity. Short dash curves are the same as in Fig. 1. The distribution of the magnetic

vector potential on the surface of cylinder Cρ. The number of a particular curve means β = v/c;

z and Az are in units c/ω0 and eω0/c, resp.

3.2. Decelerated Motion

Now we turn to the second problem (deceleration of the charged particle in the uniform
electric field along the positive z semi-axis up to a moment t = 0 after which it rests at
the origin). In this case only negative retarded times ti have a physical meaning.
For the observation time t > 0 the resulting configuration of the shock waves is shown in
Fig. 3 for α = 1/2. On them we see the bremsstrahlung shock wave C0 arising from the
termination of the charge motion and the blunt shock wave CL. Its head part with great
accuracy is described by the sphere ρ2 + (z − zl)2 = (t + tl)2 (shown by the short-dash
curve) corresponding to the shock wave emitted from the point zl = (1− α2)−1/2 − 1 at
the moment tl = −α(1 − α2)−1/2 when the velocity of the decelerated charged paricle
coincides with the velocity of light in the medium. The electromagnetic potentials vanish
outside of CL (as no solutions exist there) and acquire infinite values on the internal
part of CL. Therefore, the surface CL represents the shock wave. As a result, for the
decelerated motion after termination of the particle motion t > 0 one has the shock wave
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CL and the bremsstrahlung shock wave C0 arising from the termination of the particle
motion.

For the decelerated motion and t < 0 (i.e., before termination of the charge motion) the
physical solutions exist only inside the Mach cone CM (Figs. 4). On its internal boundary
the electromagnetic potentials acquire infinite values. On the external boundary the
electromagnetic potentials are zero (as no solutions exist there). In gas dynamics the
existence of at least two shock waves attached to a finite body moving with a supersonic
velocity was proved on the very general grounds by Landau and Lifshitz ([8] , Chapter
13). In the present context we associate them with the C(1)

L and C
(1)
M shock waves.

Figure 3. The distribution of the shock waves for the decelerated charge ( α = 1/2, t = 2)

in the uniform electric field. CM is the blunt shock wave. Part of it, with good accuracy, is

approximated by the spherical surface ρ2 + (z − zl)2 = (t+ tl)
2 (it is shown by short dash curve

C). C0 is the bremsstrahlung shock wave originating from the termination of the charge motion.

In order not to hamper the exposition we did not mention in this section the continuous
radiation which reaches the observer between the arrival of two shock waves or after the
arrival of the last shock wave. It is easily restored from the complete exposition presented
in Ref. [5] for the z = at2 motion law. The results of calculations for other values of charge
velocity may be found in Ref. [9].
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Figure 4. The continuous transformation of the Cherenkov shock wave shown at the right of

figure into the blunt shock wave shown at the left for the decelerated motion for α = 1/2. The

numbers on the curves denote the observation times. Short dash curves are the same as in Fig. 3.

4. Conclusion

Thus we confirm the qualitative predictions of refs. [2,3] concerning the existence of
the shock waves arising from the charge overcoming the light velocity barrier (inside the
medium). It would be interesting to observe them experimentally.
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