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Abstract

In the framework of classical electrodynamics elementary particles are treated
as capacitors. The electrostatic potentials satisfy equations of the Schrödinger type.
An interesting “quantization condition” for elementary charges is derived.

Introduction

The problem of charges carried by elementary particles is one of the most fundamental
problems of physics. More than a half of the century it was not attacked in the framework
of classical electrodynamics because it is commonly believed that such kind of problems
may be solved only in the framework of quantum electrodynamics. As a result many
interesting statements derived in classical physics are completely unknown to the physics
community.

Recently, one of us has shown [1] that taking into account the maximal experimental
value of the electric field intensity in air

Emax = 3× 106N

C
(1)

and using the obvious formula for the minimum size of a body with charge Q
∗e-mail : kapuscik@wsp.krakow.pl
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Rcrit =

√
k|Q|
Emax

, (2)

where

k =
1

4πε0
' 8.99× 109N.m

2

C2
, (3)

we get for a body with one electron charge,

Q = −1.6021917× 10−19C, (4)

the unexpected result

Rcrit = 2× 10−8m. (5)

Clearly, the obtained value of Rcrit is much larger than the characteristic size of
elementary particles which are of the order of 10−15 m. This fact shows that classical
electrodynamics must be modified at short distances before some quantum effects start
to play their role.

Elementary charges as elementary capacitors

In a previous paper [2] we proposed a new model of elementary charges in which these
objects are treated as capacitors. We start with the standard equations of electrostatics
[3]

rot ~E(~x) = 0 (6)

and

div ~D(~x) = ρ(~x) (7)

where ~E(~x) and ~D(~x) are the electric and displacement fields, respectively, while ρ(~x) is
the charge density which is the source of the field.

To solve equations (6) and (7) the electrostatic potential ψ(~x) is introduced by the
standard formula

~E(~x) = −~∇ψ(~x) (8)

in conjunction with some kind of constitutive relation specified by the properties of the
medium. For homogeneous media we put

~D(~x) = ε ~E(~x), (9)

where ε is the permittivity of the medium. For macroscopic bodies ε is usually taken as
a known parameter. For charge distributions inside elementary particles we should treat
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ε as a parameter of the solution because there are no experimental data concerning the
electromagnetic properties of the material from which the elementary particles are done.

In terms of the electrostatic potential ψ(~x) the basic equation of electrostatics is [3]

ε∇2ψ(~x) = −ρ(~x). (10)

In the present paper we shall consider charge distributions which do not vanish only
in finite space domains where they are functions of the electrostatic potential. We take
therefore the basic equations for the electrostatic potential in the form

ε0∆ψ(~x) = 0 for [~x| ≥ R (11)

and

ε∆ψ(~x) = −ρ(ψ(~x)) for [~x| ≤ R, (12)

where R is the radius of the charge distribution (in our approach we treat R as an experi-
mentally fixed parameter). It is clear that equation (12) may have different mathematical
properties than the Poisson equation (10).

Electrostatic fields generated by sources of the type present in equation (12) such that

ρ(ψ(~x) = 0) = 0 (13)

shall be called here self-induced electrostatic fields.
In the linear approximation (with respect to ψ, not with respect to ~x) the charge

densities for self-induced fields are of the form

ρ(~x) = Ω(~x)ψ(~x), (14)

where Ω(~x) is some structure function specific to the particular distribution of charge
in space. For simplicity we shall consider only spherically symmetric charge distributions
for which we have

Ω(~x) ≡ Ω(|~x|). (15)

Under condition (14) equations (11) and (12) are linear and this is the only justification
for that condition because otherwise we shall have non-solvable models. We may apply
therefore the superposition principle to the solutions of these equations. For |~x| ≤ R we
may look for solutions of equations (11) and (12) in the following more general form

~E(~x) = −
N∑
n=1

~∇ψn(~x) (16)

and

~D(~x) = −
N∑
n=0

∼ εn~∇ψn(~x), (17)
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where ψn is the solution of (12) corresponding to ε =
∼
εn.

Here we have taken into account that the medium in which the charge is distributed
may exist in different quantized states. Coefficients

∼
εn are the permittivities of the

medium in the corresponding states described by potentials ψn. The “pure” states, with
one selected value of permittivity, are distinguished by the requirement that for such
states, like for free space, the displacement vector ~D is parallel to the electric field ~E.

For |~x| ≥ R we assume the standard ~E and ~D fields generated by the standard
potential

ψ(~x) =
Q

4πε0|~x|
, (18)

where Q is the total charge of the system and ε0 is the permittivity of the free space.
At the boundary of the charge distribution the solutions outside and inside are glued
together by the usual continuity conditions. This means that at distance R the inner
solution must satisfy the condition.

Rψ′(R) + ψ(R) = 0. (19)

In the case when the solution is represented in the form

ψ(r) =
u(r)
r

(20)

condition (19) reads

u′(R) = 0. (21)

Conditions (19) and (21) may be satisfied only for some special values of parame-
ters present in the functional form of ψ(r). These conditions play therefore the role of
quantization conditions.

The electrostatic energy of the self-induced fields is equal to

W =
1
2

∫
|~x]≤R

Ω(~x)ψ2(~x)d3x. (22)

We shall equate this energy to the rest energy of the charged body with mass M (fixed
by the experimental data). This leads to the following normalization condition for the
self-induced fields: ∫

|~x|≤R
Ω(~x)ψ2(~x)d3x = 2Mc2. (23)

Obviously, this condition may be satisfied only if the function Ω(~x) satisfies some posi-
tivity condition. The strongest form of such a condition is

Ω(~x) ≥ 0. (24)
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The total charge which generates the self-induced field is given by the expression

Q =
∫
|~x|≤R

Ω(~x)ψ(~x)d3x. (25)

On the other hand, the charge contained in the sphere of radius r is given by

Qr = 4πr2Dr(r) =
{
Q for r ≥ R
−4πr2

∑N
n=1

∼
εn ψ

′
n(r) for r ≤ R (26)

In this paper we shall discuss self-induced fields for which the structure function Ω(~x)
is of the form

Ω(~x) = A− B(~x), (27)

where A is some constant and B(~x) is some “structure potential”. Under this assump-
tion the basic equation of electrostatics of self-induced fields (12) takes the form of the
Schroedinger-type equation

−ε∆ψ(~x) + B(~x)ψ(~x) = Aψ(~x). (28)

Simple example

It is customary in physics to test all new ideas on simple examples. In our case we
choose the simplest “structure functions” for which we may expect that the positivity
condition for energy is satisfied and for which the corresponding Schroedinger equation
for the electrostatic potential may be solved explicitly.

In the present paper we shall consider only-solutions of equation (28) because we want
to exclude charge distributions with higher moments such as dipole or quadruple. This
means that in spherical coordinates r, θ, ϕ we choose solutions which depend only on the
variable r. As a result for r ≤ R we obtain the radial equation

−ε 1
r2

∂

∂r

(
r2 ∂

∂r
ψ(r)

)
+B(r)ψ(r) = Aψ(r). (29)

As a first example we shall consider the almost trivial case for which

B(~x) = 0
(30)

A > 0. (31)

The solution to equation (29), bounded and normalized according to (23), is given by

ψ(k; r) =

√
Mc2

πAR

sin kr
r

, (32)
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where k is a real number such that

ε =
A

k2
. (33)

This solution will continuously match the outer solution (18) provided the total charge
contained in the internal domain is equal to

Q = 4cε0

√
πM

AR
sin kR. (34)

The continuity of the radial component of electric field intensity then requires condi-
tion (21) which in the present case takes the form

cos kR = 0. (35)

This is a quantization condition for our solution. It will be satisfied only for discrete
values of the constant k given by

kn = ±(2n + 1)π
2R

, (36)

where n is an arbitrary integer. Substituting these values into (31) and (32) we get the
quantized values of permittivity and charge:

∼
εn=

4AR2

(2n+ 1)2π2
(37)

Q = ±4cε0

√
πM

AR
. (38)

This result shows that in all quantized states of the medium there are only two possible
values of the quantized charge. It is in excellent agreement with the situation observed in
Nature where all elementary particles carry either positive or negative elementary charge
e.

The experimental value of elementary charge e is independent of the mass of the
particle however. This can be achieved provided the constant A is chosen to be equal to

A =
16πε20Mc2

e2R
. (39)

With this choice the potential at short distances is

ψn(r) =
e

4πε0
sin knr
r

. (40)

The quantized permittivity then takes the values

∼
εn=

64RMc2

(2n+ 1)2πe2
ε20. (41)
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Introducing the standard electromagnetic radius Rem by the formula

Rem =
e2

4πε0Mc2
, (42)

we get from (40) the relation

∼
εn
ε0

=
16

(2n+ 1)2π2

R

Rem
. (43)

This relation provides for all the information on the electromagnetic properties of the
medium inside the charge distribution.

Solutions (39) with n ≥1 corresponds to alternating shells with opposite charge inside
the same elementary charge. The recent LEP experiments show that such shells of oppo-
site charge distribution do not exist for the electron. This means that only the solution
with n=0 may have some physical application. In this way we arrive at the final form of
the electromagnetic potential,

ψ(r) = ± e

4πε0
sin(πr/2R)

r
, (44)

and the permittivity of the medium is

∼
ε 0

ε0
=

16
π2

R

Rem
. (45)

From the argument in [1] it follows that, in the framework of classical electromag-
netism,

R

Rem
≥ 107 (46)

and this implies that

∼
ε0

ε0
≥ 16.107

π2
. (47)

Such a result means that in the framework of classical electromagnetism the medium
inside the charge distribution is highly polarized.

On the other hand, from the LEP experiments we get

R

Rem
≤ 10−6 (48)

and this implies that inside the electron we have

∼
ε0

ε0
≤ 16.10−6

π2
. (49)
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Clearly this means that inside the electron the electromagnetic medium is highly non-
classical because for all classical media this ratio should be greater than one [3].

The example considered above may seem naive and oversimplified. We suspect how-
ever that this may be the only analytically solvable example.

Some possible generalizations

In this Section we shall indicate some possible generalizations of the model. It seems
that the most obvious generalization consists in taking nonzero functions B(~x) in (28),
e.g., the oscillator type structure function

B(~x) = B|~x|2 (50)

which also leads to a soluble equation for the potential. The solutions are given by
hypergeometric functions. The trouble however is in the quantization condition (19)
which cannot be solved analytically.

Another generalization consists in considering two charge centers which create poten-
tials ϕ1(~x) and ϕ2(~x), each of which satisfies equation of the type (12) with its own source
term. Assuming that the charges behave like small capacitors we arrive at the following
system of differential equations:

−ε∆ϕ1 = A11ϕ1 +A12ϕ2 (51)
−ε∆ϕ2 = A21ϕ1 +A22ϕ2 (52)

where the coefficients Ajk are some unknown parameters of the model which must be
determined.

Assuming the solutions of (50) and (51) are of the form

ϕj(~x) = Nj
sin kr
r

, (53)

we get the algebraic equations for the amplitudes Nj in the form

εk2N1 = A11N1 + A12N2, (54)
εk2N1 = A11N1 + A12N2, (55)

Nontrivial solutions exits provided the condition

(εk2 −A11)(εk2 −A22 = A12A21 (56)

is satisfied. As a result we get two possible values of k:

k2
± =

A11 +A22 ±
√

(A11 − A22)2 + 4A12A21

2ε
(57)

To simplify the calculations we may treat the case of symmetric charge centers. For
such a case we have
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A11 = A22 ≡ A, A12 = A21 ≡ C (58)

and consequently

k2
± =

A± C
ε

, (59)

The total potential given by the superposition

ϕ = ϕ1 + ϕ2 (60)

satisfies then exactly the same equation as (29) with the constant A replaced by A+C.
The profit from this generalization is however in obtaining less “trivial” solutions in the
form of superpositions of simple solutions (52). However, again the quantization condition
(19) does not lead in general to a simple equation. Only for some particular choice of the
parameters may we have soluble equations. This is the reason for our rather pessimistic
conclusion made at the end of the previous Section.

Conclusion

The hypothesis that at small distances the basic equation of electrostatics is of the
Schroedinger type has been shown to lead to interesting results. Among them the possibil-
ity of obtaining a simple quantization procedure for the electric charge is worth pointing
out. The obtained connection (38) between the mass of bodies and the electromagnetic
structure function of charged bodies indicates that the realistic theory of charge quanti-
zation may be achieved only in the unified theory of gravity and electromagnetism.
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