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Abstract

The use of differential forms allows the formulation of the principal equations of
electrodynamics in a metric-independent way. The metric is needed only for finding
the solutions. Various metrics can be introduced, depending on the medium. A
special metric, connected with the electric permittivity tensor, allows us to reduce
all electrostatic problems in anisotropic media to those in in isotropic one.

Introduction

When asked what is the principle characteristic of the electric field strength E and
magnetic induction D in three-dimensional space we usually answer: they are vectors. We
do so because we do not realize that to outer forms (called also differential forms if they
depend on position) the attributes of magnitude and direction can also be ascribed. There
are arguments showing that (in a three-dimensional, that is, not manifestly relativistic,
approach) E and D are differential forms and they also can be considered as directed
quantities.

In the last decades, a way of presenting electrodynamics has been proposed based
on a broad use of differential forms; see Refs [1-8]. Such a formulation represents a
deep synthesis of formulae and simplifies many deductions. Most authors concentrate on
algebraic definitions of the outer forms: nice exceptions are found in Refs. [2], [7] and
[9] where visualisations by geometric images are shown. Not all presentations, also, put
enough care to the use of pseudoforms. In Refs. [1-4], D is claimed to be a two-form.
Only Schouten [5], Frankel [6], Ingarden and Jamiolkowski [8] applied pseudoforms in
electrodynamics, under the names: covariant W-p-vectors [5], twisted forms [6,7] or odd
forms [8]. The named authors admit that D is a pseudo-two-form.
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Table 1.
pseudo-

features vector pseudovector bivector bivector
attitude straight line straight line plane plane

orientation arrow on curved arrow curved arrow
around arrow on piercing

magnitude length length area area
l l* S S*

pseudo- pseudo-
one-form one-form two-form two-form

attitude plane plane straight line straight line
orientation arrow curved curved arrow arrow on

piercing arrow on around
magnitude inverse inverse inverse inverse

length length area area
E H B D

The forms and pseudoforms are necessary to formulate electrodynamics in a scalar
product independent way. We call it premetric electrodynamics. It turns out that only
the principal equations of this theory can be tackled in this manner. When one seeks
their solutions, that is, specific electromagnetic fields as functions of position, a scalar
product is needed for writing, among others, the constitutive equations involving electric
permeability and magnetic permittivity. The scalar product allows us to replace the outer
forms and pseudoforms by vectors and pseudovectors. A special scalar product can be
introduced in the case of anisotropic dielectric, for which the vectors ~E and ~D are parallel.
In this manner the medium can be treated analogously to the isotropic one. Then the
counterpart of the Coulomb field and the fields for many electrostatic problems can be
found in a very natural way.

Directed quantities

The list of directed quantities in three-dimensional space consists of multivectors,
pseudomultivectors, forms and pseudoforms. Table 1 collects eight quantities which, in
the presence of a metric, can be replaced by vectors or pseudovectors. For their more
systematic introduction see Refs. [10,11]. The upper part contains multivectors and
pseudomultivectors, the lower part contains their duals. The term attitude, occurring
in Table 1 needs an explanation. Each directed quantity has a separate direction which
consists of attitude and orientation. For the well known vector, depicted as a directed
segment, the direction consists of a straight line (on which the vector lies), after Lounesto
[12] called an attitude, and an arrow on that line which is called the orientation. Two
vectors of the same attitude are parallel.

Geometric images of the eight quantities are shown in Figures 1-7.
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Physical quantities

We now present a list of physical quantities with their designation as directed quan-
tities along with short justifications.

The most natural vectorial quantity is the displacement vector l which is of the same
nature as the radius vector r of a point in space relative to a reference point. Of course,
the velocity v=dx/dt, the derivative of r with respect to a scalar variable t, is also a
vector. The same is true of the acceleration a=dv/dt, the momentum p=mv and the
electric dipole moment d=ql.

The angular momentum L=r∧p, as the outer product of two vectors r and p, is the
bivector. The best physical model of a bivector is a flat electric circuit. Its magnitude
is just the area encompassed by the circuit; its attitude is the plane of the circuit and
orientation is given by the sense of the current. This bivector could be called a directed
area S of the circuit. A connected bivectorial quantity is then the magnetic moment
m=IS of the circuit, where I is the current.

A one-form quantity is the electric field strength E, since we consider it to be a linear
map of the infinitesimal vector dx into the infinitesimal potential difference: -dV =E.dx.
The magnetic induction B is an example of a two-form quantity, since it can be treated
as a linear map of the directed area bivector dS into the magnetic flux: dφ=B.dS. The
Stokes theorem

∫
B.dS=

∮
A.dl, in which A is the so called vector potential, says that the

product A.dl is also the magnetic flux. Thus, A is a one-form rather than a vector.
Now for some examples of pseudoquantities; the area S* of a surface, through which

a flow is measured, is the first one. The side of the surface from which a substance
mass, energy, electric charge, etc. passes is important. Hence, the orientation of S* can
be marked as an arrow not parallel to the surface. This is situation depicted in Figure
8. We claim that the area of a flow is a pseudo-bivector quantity. Accordingly, the
flux density j (or the current density in case of the electric current flowing) has to be a
pseudo-two-form quantity. It corresponds to the linear map dI=j.dS* into the electric
current dI.

The electric induction D has a similar nature. We present here a prescription of
its measurement quoted from Ref. [13], p. 68: “Take two identical discs each made of
very thin sheet metal, and each with an isolated handle. Place one disc on top of the
other, holding them by the handles, electrically discharge them and then place them in
the presence of a field. As you separate the discs, the charges induced on them (one
positive, the other negative) are also separated. Now measure one of them with the aid
of a Faraday cage. It turns out that for a small enough disc the charge is proportional to
its area.”1 One will agree that the disc area dS? is a pseudo-bivector quantity since its
magnitude is the area, its attitude is the plane and its orientation is given by an arrow
showing which disc is to be connected with the Faraday cage; see Figure 8. Because of the
proportionality relation dQ=D.dS*, we ascertain that the electric induction is a linear
map of the pseudo-bivectors into scalars, i.e. it is a pseudo-two-form. Notice that D is
of the same directed nature as the electric current density. This is reflected in the fact
that D is called a displacement current.
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Figure 1. Two pseudovectors of the same attitude and opposite orientations depicted by ori-

ented parallelogram.

a

bb

a

Figure 2. Bivectors represented as outer products of two vectors. Two bivectors a∧b and b∧a,

opposite to each other.

a

c

c
a

Figure 3. Pseudobivectors represented as outer products of vector a and pseudovector c. Two

pseudobivectors a∧c and c∧a, opposite to each other.

3

2

1

0

Figure 4. Family of parallel planes representing a one-form. Orientation depicted as the straight

arrow. By counting pierced planes we ascribe a number to a vector.
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Figure 5. Family of parallel planes representing a pseudo-one-form. Orientation depicted as

curved arrow on one of planes.

Figure 6. Family of parallel pipes representing two-form. Orientation depicted as a curved

arrow around a pipe.

Figure 7. Family of parallel pipes representing two-form. Orientation depicted as a straight

arrow along a pipe.
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dS*

to the cage

Figure 8. Operational definition of D. THe pseudobivector dS* corresponding to the disc.

In another place of the same book [13], p. 347, one may find an operational definition
of the magnetic field strength: “Take a very small wireless solenoid prepared from a
superconducting material. Close the circuit in a region of space where the magnetic
field vanishes. Afterwards, introduce the circuit into an arbitrary region in the field. A
superconductor has the property that the magnetic flux enclosed by it is always the same;
a current will be induced to compensate for this external field flux. Now measure the
current dI flowing through the superconductor. It turns out to be proportional to the
solenoid length: dI=H.dl*”. The solenoid length dl* in this experiment is apparently a
pseudovector, hence the magnetic field strength H is a pseudo-one-form.

To my knowledge, the above mentioned solenoid length is the only example of a
physical quantity with the true pseudovector nature. Many other quantities hitherto
called pseudovectors (like angular momentum, magnetic moment, magnetic induction,
magnetic field strength) turn out to be-as mentioned previously - bivectors, pseudo-one-
forms or two-forms.

Typical examples of geometric and electromagnetic quantities are added in Table 1.

Scalar product

The well known theorem, called Gram-Schmidt orthogonalization, sounds as follows.
For any scalar product in a vector, a basis exists which is orthonormal. We present its
inverse:

Theorem For any basis in a vector space, a scalar product exists such that the basis
is orthonormal.

Proof. A scalar product in an n-dimensional vector space is a bilinear form which is
symmetric, positive definite, and nondegenerate. When we have a basis m1,m2, . . . ,mn,
in our vector space, then we have, for all vectors v, w, the decomposition v =

∑n
i=1 v

i

mi, w =
∑n

i=1 w
i mi, v

i, wiεR. It is easy to check that the expression

gm(v,w) =
n∑
i=1

viwi (1)

satisfies all the demanded properties. Thus (1) can be considered as a scalar product. It
yields (mi,mj)=δij which means that vectors mi form an orthonormal basis.

In this manner, we see that for any basis one can choose a scalar product such that it is
an orthonormal basis. One should stress here that such a scalar product is strongly basis
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dependent. For different bases, different scalar products are obtained by this prescription.
We now agree that a scalar product, a norm and a metric determined by it are not

unique for a given vector space. Therefore, there is a need to consider vector spaces
that are devoid of a metric. The use of differential forms allows the formulation of the
equations of electrodynamics in a way independent of any scalar product. The scalar
product is necessary to formulate the constitutive equations relating E to D and to find
the solutions.

After a (nondegenerate) scalar product is established in the linear space, a natural
mapping of linear forms into vectors is easy to define. So, for a linear form f, there exists
one and only one vector ~f such that

f (r) = (~f , r) for each vector r

f

f

Figure 9. Replacement of a one-form f by a vector ~f .

D

D

Figure 10. Replacement of a pseude-two-form D by a vector ~D.

where (.,.) denotes the scalar product. Of course, ~f is perpendicular to the planes forming
the attitude of f; see Figure 9. (Recall that the word “perpendicular” makes sense only
when the scalar product is present.) Vector ~f inherits its orientation from the form f, but
its attitude is perpendicular to that of f.

We formulate the following prescription of changing a given pseudo-two-form D into
vector ~D: take the direction of D, ascribe it to ~D and use the magnitude of D to define
the length of vecD. This prescription is illustrated in Figure 10.

Similar prescriptions exist which allow us to replace all bivectors, pseudobivectors,
forms and pseudoforms of grade one and two by vectors and pseudovectors. In this
manner the number of directed quantities summarized in Table 1 is reduced from eight
to two due to the presence of the scalar product.
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Anisotropic medium

An anisotropic dielectric is characterized by its electric permittivity tensor ε. Let us
introduce its square root η:

η2 = ε.

Let e1, e2, e3 be a basis orthonormal with respect to ordinary scalar product. We intro-
duce new basis m1,m2,m3

mi =
3∑
j=1

ηijej

and a second scalar product gm through prescription (1). We formulate the following
Statement. For the scalar product (1) determined by the basis mi the one-form E is

perpendicular to the pseudo-two-form D.
Its proof can be found in Ref. [10]. It follows from this statement that the vectors

~D and ~E obtained from the respective forms D and E by the prescription described in
previous Section are parallel. In this manner the new scalar product gm and the metric
determined by it ensures that the dielectric “looks like” an isotropic one.

Figure 11. Equipotential surfaces for the Coulomb field.

After this observation one can easily solve counterparts of all electrostatic problems
for the anisotropic dielectric medium. For instance, the electric potential φ of a single
charge Q is

φ(r) =
Q

4πε0(detη)|r|m
where |rm|2 = gm(r, r), see [10]. Such potential can be found in Ref. [16], p. 57.
This Coulomb field has the “spherical” symmetry for “spheres” in the metric of gm.
This means that the equipotential surfaces are ellipsoids given by equations |r|m=const.
These ellipsoids are depicted as ellipses in Figure 11. Also curved lines of vector field ~E
are shown in this Figure, if the vectors E are obtained from the one-form E through the
ordinary scalar product. If, on the other side, we would pass to vector ~E′ with the use of
scalar product gm, the lines of this field would be straight, see Figure 12.
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The electric induction vector ~D (determined with the use of gm) for the single charge
Q is

~D(r) =
Qr

4π|r|3m
.

The lines of this field are radially outgoing from the positive charge Q, see Figure 13.
Thus the lines of vector field ~D are straight independently of any scalar product.

Figure 12. Field lines for the electric vector field in the metric of gm.

Figure 13. Field lines for the electric induction field of a single charge.
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