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Abstract

Anderson localization of electromagnetic waves in random arrays of dielectric
cylinders is studied. An effective theoretical approach based on the finite size scaling
analysis of transmission is developed. The disordered dielectric medium is modeled
by a system of randomly distributed 2D electric dipoles. The appearance of the
band of localized waves emerging in the limit of an infinite medium is discovered.
It suggests deeper insight into existing experimental and theoretical results.

1. Introduction

The concept of Anderson localization in solid-state physics originates from investiga-
tions of transport properties of electrons in noncrystalline systems such as amorphous
semiconductors or disordered insulators. In a sufficiently disordered infinite material an
entire band of electronic states can be spatially localized [1]. Thus for any energy from
this band the stationary solution of the Schrödinger equation is localized for almost any
realization of the random potential. Prior to the work of Anderson, it was believed that
electronic states in infinite media are either extended, by analogy with the Bloch picture
for crystalline solids, or are localized around isolated spatial regions such as surfaces and
impurities [2].

Usually experiments related to electron localization deal with such measurable quan-
tities as transmission, diffusion constant, or a transport coefficient (e.g., electrical con-
ductivity). For electronic problems the natural quantity to look for is the static (dc)
conductivity. Intuitively, localized states are basically bound to stay in a finite region
of space for all times, whereas extended ones are free to flow out of any finite region.
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Therefore, it is natural to expect that the material in which an entire band of electronic
states is localized will be an insulator, whereas the case of extended states will correspond
to a conductor. In this way the phenomenon of Anderson localization may be referred to
a dramatic inhibition of the propagation of an electron when it is subject to a spatially
random potential. This connection is not proven on a general basis but it is certainly
valid within reasonable physical models [3].

Recently disordered dielectric structures with typical length scale matching the wave-
length of electromagnetic radiation in the microwave and optical part of the spectrum
have attracted much attention. Propagation of electromagnetic waves in these structures
resembles the properties of electrons in disordered semiconductors and many generaliza-
tions of electron localization to electromagnetic waves have been proposed [4,5,6,7,8]. A
convincing experimental demonstration that strong localization could be possible in two-
dimensional disordered dielectric structures has been given [9]. The strongly scattering
medium has been provided by a set of dielectric cylinders randomly placed between two
parallel aluminum plates on half the sites of a square lattice.

Better understanding of the Anderson localization of electromagnetic waves requires
sound theoretical models. Such models should be based directly on the Maxwell equations
and they should be simple enough to provide calculations without too many approxima-
tions. In this paper we investigate a simple yet reasonably realistic model describing the
scattering of electromagnetic waves from a collection of randomly distributed 2D dielec-
tric particles. The main advantage of the presented approach is that we do not need to
perform any average over the disorder. Averaging of the scattered intensity over some
random variable leads to a transport theory of localization [10,11,12]. However, to per-
form any meaningful averaging procedure the assumption of infinite medium is needed.
On the other hand within our approach we can easily see how localization “sets in” for
increasing number of scatterers by studying the finite size scaling of transmission.

2. Basic Assumptions

In the following we study the properties of the stationary solutions of the Maxwell
equations in two-dimensional media consisting of randomly placed parallel dielectric cylin-
ders of infinite height. This means that one (y) out of three dimensions is translationally
invariant and only the remaining two (x, z) are random. The main advantage of two-
dimensional localization is that we can use the scalar theory of electromagnetic waves:

~E(~r, t) = Re
{
~ey E(x, z) e−iωt

}
, (1)

and can still try to compare, at least qualitatively, the model predictions with experimen-
tal results [9] and rigorous numerical simulations [13,14,15]. Consequently, the polariza-
tion of the medium takes the form:

~P (~r, t) = Re
{
~ey P(x, z) e−iωt

}
. (2)

Localization of electromagnetic waves in 2D media is studied experimentally in mi-
crostructures consisting of dielectric cylinders with diameters and mutual distances being
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comparable to the wavelength [9]. It is a reasonable assumption that what really counts
for the basic features of localization is the scattering cross-section and not the real geo-
metrical size of the scatterer. Therefore we will represent the dielectric cylinders located
at the points (xa, za) by single 2D electric dipoles:

P(x, z) =
N∑
a=1

pa δ
(2)(x− xa, z − za). (3)

Although this approximation is strictly justified only when the diameter of the cylinders
is much smaller than the wavelength, in practical calculations many multiple-scattering
effects have been obtained qualitatively for coupled electrical dipoles [16,17,18].

3. Metallic Waveguide

In the present model we position the 2D dipoles (3) between two infinite, perfectly
conducting mirrors described by the equations x = 0 and x = d. For simplicity we
consider only the case where the dipoles are oriented parallel to the mirrors. Moreover,
our discussion will be restricted to the frequencies from the following range:

π < k d < 2π, (4)

where k = ω/c is the wave number in vacuum. Thus in the planar waveguide formed by
the two parallel mirrors separated by a distance d only one guided TE mode exists [19]:

E (0)(x, z) =
2√
β d

sin(αx) eiβ z , (5)

where the propagation constants are given by:

α =
π

d
, β =

√
k2 − α2. (6)

The total field far from the dipoles is fully described by the reflection and transmission
coefficients. Using the Lorentz theorem and repeating the straightforward but lenghtly
calculations (see, e.g., [19]) we finaly arrive at the following expressions determining the
transmission

τ = 1 + iπ k2
N∑
a=1

pa E (0)∗(xa, za), (7)

and reflection coefficients

ρ = iπ k2
N∑
a=1

pa E (0)(xa, za), (8)

for a given dipole moments pa. In the following section we will relate pa to the incident
field E (0)(x, z).

4. Method of Images

A simple way to reproduce the boundary conditions of parallel mirrors on the elec-
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tromagnetic field is to use the method of images. This technique has been used, i.e., in
QED calculations of spontaneous emission in cavities [20,21]. To reproduce the correct
boundary conditions on the radiation field of each dipole (3) the mirrors are replaced by
an array of image dipoles whose phases alternate in sign:

P(x, z) =
N∑
a=1

∞∑
j=−∞

(−1)jpa δ(2)(x− (−1)jxa − jd, z − za). (9)

To use safely the point dipole approximation it is essential to use a representation
for the scatterers that fulfills the optical theorem rigorously and conserves energy in the
scattering processes. This requirements give the following form of the coupling between
the dipole moment pa and the electric field incident on the dipole E ′(xa, za) [22]:

iπ k2 pa =
1
2

(eiφ − 1)E ′(xa, za). (10)

The field acting on the ath dipole:

E ′(xa, za) = E (0)(xa, za) +
1
2

(eiφ − 1)
N∑
b=1

Gab E ′(xb, zb), (11)

is the sum of the incident guided mode ~E (0) and waves scattered by all other dipoles and
their images. In the present model the G matrix from Eq. (11) is defined by:

iπ Gab = 2
∑
ρ

(j)
ab
6=0

(−1)j K0(−ikρ(j)
ab ), (12)

where
ρ

(j)
ab =

√
(xa − (−1)jxb − jd)2 + (za − zb)2 (13)

denotes the distance between the ath dipole and the jth image of the bth dipole. Eqs.
(11) determine the field acting on each dipole E ′(xa, za) for a given field of the guided
mode E (0)(xa, za) incident on the system. If we solve this system of linear equations and
use Eqs. (10) then we are able to find the transmission and reflection coefficients given
by Eqs. (7) and (8).

Note that analogous relationships between the stationary outgoing wave and the sta-
tionary incoming wave are known in general scattering theory as the Lippmann-Schwinger
equation [23]. In this framework localized waves correspond to nonzero solutions of the
Lippmann-Schwinger equation (or in our case Eqs. (11)) for the incoming wave equal to
zero [24]. Also different arguments supporting this statement, based on the analysis of
the behavior of the energy density of the field, can be elaborated [22].

5. Transmission Experiment

The actual properties of physical systems are observed experimentally not from the
properties of the stationary solutions of the Maxwell equations. These are only theoretical
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Figure 1. Transmission T of the system of dielectric cylinders described by the phase shifts
φ = −1 placed randomly in a planar metallic waveguide ploted as a function of the number of
cylinders N .

tools. Experiments deal rather with measurable quantities. For many practical problems,
a natural quantity to look for is the transmission T = |τ |2 of a finite system of charac-
teristic size L and its dependence on L. Usually propagation of electromagnetic waves
in weakly scattering random media can be described by a diffusion process. Thus the
equivalent of Ohm’s law holds and the transmission decreases linearly with the size of the
system T ∝ L−1. When the fluctuations of the dielectric constant become large enough,
due to interference the electromagnetic field ceases to diffuse and becomes localized. The
Anderson transition can be best observed in the transmission properties of the system.
In the localized state the transmission decreases exponentially with the thickness of the
sample T ∝ e−L/ξ [5].

As a simple example let us consider a system of N cylinders placed between the
mirrors separated by a distance k d = 3π/2. The cylinders were distributed randomly
with constant uniform density n = 1 cylinder per wavelength squared. Therefore for each
N the size of the system is proportional to the number of cylinders L ∝ N .

In Fig. 1 we present on the log-log plot the transmission T as a function of the number
of cylinders N . It follows from inspection of this figure that T ∝ e−L/ξ. This proves that
in the limit L→∞ our system indeed goes into a localized state where it behaves as an
optical insulator.

Let us imagine a typical configuration of an infinite medium exhibiting Anderson
localization. When we consider some finite part of length L of this system, as we are
investigating in the case of a transmission experiment, the localized modes become reso-
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Figure 2. Transmission T of the system of N dielectric cylinders placed randomly in a planar
metallic waveguide plotted as a function of the phase shift of a single cylinder φ.

nances. These resonances can help the wave to tunnel through the system for frequencies
near to those of the localized modes of the infinite medium. This will lead to specific,
sample dependent values of the phase shifts φj, for which we have maxima of transmission.

To illustrate this statement, in Figure 2 we have plotted the transmission T as
a function of the phase shift of a single cylinder φ. We see that for sufficiently large N
incident waves are totally reflected for almost any φ except the discrete set φ = φj for
which the transmission is close to unity.

It is reasonable to expect that in the case of a random and infinite system, a count-
able set of phase shifts φj corresponding to localized waves becomes dense in some finite
interval. Therefore, an entire band of spatially localized electromagnetic waves appears.
Anderson localization occurs when this happens. Physically speaking this means that dif-
ferent realizations of sufficiently large system of randomly placed cylinders are practically
(i.e., by a transmission experiment) indistinguishable from each other. E.g., for a certain
realization of a random and infinite one-dimensional system one can prove mathemati-
cally [25] that incident waves are totally reflected for “almost any” energy, i.e., except
the discrete set (of zero measure) for which the transmission is equal to unity. This dense
set of energies exceptional in the Furstenberg theorem [26] corresponds to the band of
localized waves.

According to the scaling theory of localization [27], the dimension of the disordered
medium is a crucial parameter. In one and two dimensions any degree of disorder will lead
to localization, while in three dimensions a certain critical degree of disorder is needed
before localization will set in. Our calculations do not exclude the possibility that in an
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infinite 2D medium the band of localized waves may appear even for small φ. However, in
all experiments we can investigate only systems confined to certain finite regions of space.
As follows from Fig. 2 (dealing with finite media), with increasing size of the system the
band of localized waves appears faster for |φ| ' π, than for other values of φ. This means
that the scattering cross-section of individual scatterers k σ = 2(1−cos φ) should be made
maximal (for example by tuning the frequency to match the internal resonances of the
cylinders). Let us stress that the situation can be different for 3D random media.

6. Summary

In summary, we have further developed and refined a quite realistic coupled-dipole
model describing scattering of electromagnetic waves by a disordered dielectric medium.
Its relative simplicity allowed us to discover some new features of the Anderson localiza-
tion of electromagnetic waves in 2D dielectric media without using any averaging proce-
dures. Within our theoretical approach one can easily see how localization “sets in” for
increasing size of the system. For the first time (to our knowledge) the appearance of the
band of localized electromagnetic waves in 2D was demonstrated. Connection between
this phenomenon and a dramatic inhibition of the propagation of electromagnetic waves
in a spatially random dielectric medium has been sketched. It can be understood as a
counterpart of Anderson transition in solid state physics.
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