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Abstract

Within the framework of the strong-coupling polaron theory and the bulk phonon
approximation we report the possibility and criteria in achieving stable bipolaron
states in confined media. We use a simple model of two electrons constrained within
an anisotropic three dimensional parabolic potential box of tunable barrier slopes.
Conforming the confining potential from one geometry to the other, we obtain an
explicit tracking of the stability criteria as a function of the degree of confinement
uncovering all low dimensional major geometric configurations of common interest.

Introduction

Two electrons in an ionic or polar crystal can form a stable bound state, termed a
bipolaron, where the surrounding lattice polarization field common to both particles is
strong enough to compete with and even dominate over the Coulomb repulsion. Thus,
depending on the dielectric properties of the lattice, provided the effective Coulomb re-
pulsion is not larger than a critical strength and the electron phonon interaction is suf-
ficiently strong to overcome that repulsion, there may arise the possibility that a stable
bipolaronic state forms [1-12]. The critical conditions which favour bipolaron forma-
tion have already been reported in the literature for the bulk and strict two dimensional
cases [5-8,11]. Our present concern will be to extend the problem into a more general
context which allows us to study the stability criterion as a function of the degree of
confinement and hence provide a broader understanding of confined bipolarons through a
description encompassing the bulk and quasi-two, -one and -zero dimensional geometries.
For this purpose, we introduce a rather simple model of a pair of electrons immersed in
the field of bulk LO-phonons and bounded within a harmonic-oscillator potential, i.e.,
VHO(ρ, z) = 1

2
(k2
ρρ

2 + k2
zz

2). The respective force constants kρ and kz will be treated as
adjustable parameters refering to the degree of confinement in the x-y and z directions,
respectively. By tuning kρ and/or kz from zero to large values one can obtain an inter-
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polating description of the two-polaron system in various confinement geometries. Such
a choice for the confining potential is appealing in the sense that the static depletion
fields achieved in microstructures such as quantum wires and dots, which are laterally
confined by Schottky gates, exhibit nearly parabolic potentials. Besides this, the usage
of quadratic potential profiles greatly facilitates the calculations and leads to concise and
tractable analytic expressions.

We should note the fundamental approach followed in this work will be to adopt
the so-called bulk-phonon approximation, where we take into account solely the generic
low dimensional aspect of the dynamical behavior of the confined electrons and take
them as interacting with the bulk phonon modes only. We refrain from including any
modifications and complications such as those due the contributions from all other kinds
of phonon modes, the screening effects, the loss of validity of both the effective mass
approximation and the Fröhlich interaction in thin quantum wells and further detailed
features. Our approach will primarily be to account for the bulk phonon effects only
and provide as simple, yet unifying and comprehesive insight into the confined-bipolaron
problem as a function of the effective dimensionality stripped from all other perturbing
quantities.

Theory

Using units for which 2m? = ~ = ωLO = 1, the Hamiltonian describing the confined
electron pair coupled to LO-phonons reads as

H = He +
∑
Q

a†QaQ +
∑
j=1,2

∑
Q

VQ(αQei
~Q.~rj + α+

Qe
−i ~Q.~rj ), (1)

He =
∑
j=1,2

p2
j +

∑
j=1,2

1
4

(Ω2
ρρ

2
j + Ω2

zz
2
j ) +

U

|~r1 − ~r2|
, (2)

where

Ωρ =
√
kρ/m?ω2

LO, and Ωz =
√
kz/m?ω2

LO. (3)

In the above, aQ and a†Q denote the phonon operators, and ~rj = (~ρj , zj), (j = 1, 2),
are the positions of the electrons in cylindrical coordinates. Similarly, pj refer to the
corresponding momenta. The interaction amplitude is related to the phonon wavevector
~Q = (~q, qz) through VQ = (4πα)1/2/Q. The coupling constant is given, in terms of the
high frequency and static dielectric constants of the material, by

α =
e2

2

(
1
ε∞
− 1
ε0

)
, (4)

in terms of which the unscreened Coulomb repulsive amplitude is

U = e2/ε∞ = 2α/(1− η), (5)
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where η = ε∞/ε0 < 1.
Tuning the dimensionless frequencies Ωρ and/or Ωz from zero to large values one

achieves a broad display of the phase stability of the bipolaron state as a function of
the effective dimensionality extending from the bulk to the extreme limit of strict two
dimensions and interpolating further over a wide range of all major geometric configu-
rations. Setting either Ωρ = 0, or else, Ωz = 0, and fixing the remaining parameter at
non-zero finite values, the geometry conforms respectively to the quasi-two dimensional
(Q2D) slab-like structure or the quasi-one dimensional (Q1D) “free-standing-wire” con-
figuration. Hereafter, whereever necessary to facilitate the notation, we shall use Ω to
mean Ωρ(Ωz) when Ωz(Ωρ) = 0. In the spherically symmetric box-type configuration we
shall simply set Ωρ = Ωz = Ω.

The approximation that we adopt here is the conventional Pekar adiabatic theory [13]
which imposes a product Ansatz separable in the particle and phonon coordinates, i.e.,

Ψ = Φ(~R, ~r)× exp
∑
Q

gQ(aQ − a†Q)|0〉 (6)

In the above, the exponential operator acting on the phonon vacuum is the displaced
oscillator transformation, where gQ is a variational parameter determined from the re-
quirement that ∂〈Ψ|H |Ψ〉/∂gQ = 0, yielding

gQ = VQ
∑
j=1,2

〈Φ|e±i~Q.~rj |Φ〉. (7)

For the particle part of the trial state (6), we assume variational oscillator-type wave-
functions separable in the centre of mass, ~R = (~r1 + ~r2)/2, and the relative coordinates
~r = ~r1 − ~r2, i.e.,

Φ(~R, ~r) = N
√
r2
ρ + r2

z exp
{
−1

2
λ2

1(R2
ρ + µ2

1R
2
z)
}
× exp

{
−1

2
λ2

2(r2
ρ + µ2

2r
2
z)
}
, (8)

in which ~Rρ and Rz stand for the lateral and z components of the center of mass position
vector, and the components ~rρ and rz have similar meanings for the relative position

vector. N is the normalization constant, and the factor r =
√
r2
ρ + r2

z multiplying the

exponentials ensures that Ψ|r=0 = 0; hence the electrons are repulsively kept separated.
The bipolaron ground state energy can be obtained through a numerical minimization

of Eg = 〈Ψ|H |Ψ〉with respect to the set of four variational parameters: {λi, µi}, (i = 1, 2).
In our numerical calculations we shall trace the domain of stability of the bipolaron as a
function of α and the confining parameters Ωρ and Ωz .

Results and Conclusions

The criterion for which a stable bipolaronic state can form is that the energy of the
system of two interacting polarons should be lower than twice the one-polaron energy.
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Stating alternatively, for the bipolaron formation to be favorable, one should have

Eg < 2E(1)
g , (9)

where E(1)
g refers to the one-polaron ground state energy, calculated within an identical

framework to the bipolaron system. For this purpose, we shall take the one-polaron energy
results from a previous paper [14] devoted to the study of the one-polaron problem within
exactly the same context as in the present consideration.
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Figure 1. The critical ratio ηc as a function of the degree of confinement for the quasi-two,

-one and -zero dimensional configurations displayed respectively by the upper, middle and lower

curves in each of the four similar sets of plots, the three of which are in thin font and one in

thick. The thin curves display the variation of ηc against bare Ω (the bottom axis) for α = 5, 10

and 20, plotted respectively in solid, dashed and dotted lines. The assembly of thick solid curves

plotted against Ω/α2 (the top axis) is a universal duplicate of the concent of the thin curves

regardless of the value of α.
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Of immediate relevance to this work are the recent analyses of the problem in strict two
dimensions [5-8,11], where it is observed that the critical Coulomb repulsion coefficient,
below which bipolaron formation is favourable, takes on a larger value than in three
dimensions. Specifically, within the same approximate adiabatic theory and the same
oscillator-type particle wavefunction separable in the centre of mass and relative coordi-
nates, the critical η which governs the domain of stability (η < ηc) is found to be 0.131 in
the bulk (3D), and 0.158 in two dimensions (2D), respectively [7]. In the same reference,
it has also been noted that, since in the strong-coupling the energies are proportional to
α2, there is no critical value of α in this scheme. The finding that there is no relation to
a critical α in bulk and two dimensions is an artifact of the strong-coupling theory rather
than any intrinsic property of the two-polaron system or the Fröhlich Hamiltonian.

Before we present our results, we would like to mention that, if the energies are scaled
by α2 and lengths by α, i.e., E → Eα2 and L → Lα, the only modification in the
Hamilltonian, Eqs. (2-3), would be to replace the confining parameter Ω by Ω/α2 and
the Coulomb coefficient U by U/α. Thus, in a representation where the critical value of
parameter η(= 1 − 2/(U/α)) is to be plotted against Ω/α2, rather than Ω, we find that
irrespective of the value of α one can display the phase boundary on a single universal
curve for each individual geometry. In every case, whatever the geometric configuration
is, the ground state energy is seen to be proportional to the square of the coupling
constant, i.e. Eg = −Cα2, where C, the corresponding coefficient of proportionality,
bears a functional relation solely to Ω/α2 for both the single-polaron and two-polaron
systems. Therefore, in the foregoing particular plot for which the abscissa is expressed in
units of the ratio Ω/α2, one can conveniently assign α any arbitrary large value with no
loss in generality.

In Fig. 1 we provide a series of plots portraying the variation of the critical value ηc
as a function of the degree of confinement for the quasi-two, -one and -zero dimensional
configurations. The computer runs performed for three different coupling constants (α =
5, 10 and 20) are plotted as thin curves with the abscissa taken as bare Ω. Conforming
the scale of the abscissa from Ω to Ω/α2, we find out that, whatever the value of α, the
thin curves coalesce together and universally map onto one single curve as displayed in
thick solid font in the figure.

Holding α fixed at any desired value and following the variations in ηc as Ω is turned on,
we first note that for each of the aforementioned dimensionalities the critical η, starting
from the common 3D-value, η(3D)

c = 0.131, displays in common a decreasing trend where
the respective decay rates are observed to become faster as the effective dimensionality is
reduced from two to one, and to zero. Thus, in the wire-and box-type configurations the
critical Coulomb strength below which a bipolaron forms lies deviated considerably below
the corresponding value in the slab-type geometry. We therefore see explicitly that lower
the dimensionality, the more unlikely it is to realize the bipolaron state to form; and in
particular, in the box-type confinement, even a small value of η will be sufficient enough
to lead the Coulomb force to oppose and dominate over the phonon-coupling-induced
localization of the composite assembly of the two nearby electrons (cf., Ref.[11]). Clearly,
with increasing degree of confinement (i.e., with growing Ωρ and/or Ωz), the Coulomb
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repulsion is steadily strengthened as the particles are squeezed to get closer; and one
expects the rate at which this happens be most prominent in the QOD-configuration
where the electrons are pushed towards one another from all radially inward directions.
In the Q1D- and Q2D-configurations, however, the electrons are free to expand and relax
themselves respectively in either one or two directions; thus resulting with comparatively
weaker Coulomb repulsion and weaker dominating strength over the lattice polarization
field holding the particles together.

We should note that in confined systems it is not only the Coulomb repulsion strength
which gets pronounced, but also the phonon-coupling becomes pseudo-enhanced leading
to a more effective and deeper polaronic binding to oppose and counterbalance the re-
pulsive forces. The competitive interrelation between these aspects of the problem deter-
mines the phase boundary and, moreover, may even pose a salient feature stemming from
a cross-over of this competition as the confining parameters are varied. In particular, in
the Q2D slab-geometry where this feature shows up most prominently, we observe that
the critical η does not display a monotonically increasing behavior interpolating between
the 3D- and 2D- limits, but instead reaches its two dimensional value [7] (η(2D)

c = 0.158)
only after having passed through a minimum; thus reflecting an explicit image of the
dominating effect of either the Coulomb repulsion or the phonon mediated attraction
over the other.

For a complete description covering the ranges between all possible extremes of the
effective dimensionality, we set α = 10 and construct the phase-picture of the bipolaron
system over reasonably broad ranges of Ωρ and Ωz (cf., Fig. 2). Starting from the left
corner at the top we see that ηc maintains its 3D-value (∼0.131) until the polarons start
to feel the boundary potential, and beyond the flat plateau thus formed, the size effects
start to influence the Coulomb and electron-phonon interactions and alter the bipolaron
stability greatly. On following the directions along the Ωρ- and Ωz-axes and the line
Ωρ = Ωz, we achieve the phase boundary for the quasi-one, -two and -zero dimensional
confinements, respectively. Clearly, the deep valley lying in between the 3D, annd 2D-
plateaus and downhill between the flanks provides a broader large scale portray of the
aforementioned feature pertaining to the crossover of the dominating strengths of the
repulsive and attractive forces induced by the Coulomb and electron-phonon interactions.

A further distinctive feature of the problem intruded by the confining potential is
that, except in the extreme limits, Ωρ = 0 and Ωz = 0 or ∞, the phase boundary is seen
to be sensitive to the coupling constant. Clearly, in Fig. 1 we note that the set of all
curves drawn for different α originate from the common 3D-value, but however display
a succession of translationally displaced profiles as α is varied. It should be noted that
the place at which the curves start to deviate below the 3D-value, shifts towards larger
Ω for stronger phonon coupling, since for large α the polarons are already in a highly
localized configuration and a small-sized bipolaron becomes influenced by the confining
boundary only for large Ω. Alternatively stating, for large α one requires inevitably
larger values of Ω for the geometric confinement to take and dominate over the further
confinement induced by phonon coupling. Peculiar to the slab geometry, we also observe
that in the limit Ω → ∞, regardless of α, all plots merge asymptotically to the same
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2D-value. This observation is, in fact, totally consistent with the aforementioned remark
that, in the bulk and two dimensional cases, there is no critical value for α. However, for
configurations other than the integer dimensional space limits, the geometric confinement
is seen to affect the phonon-coupling induced localization of the system; thus resulting in
an explicit relevance of the coupling constant to the formation of bipolarons in confined
media. ln all the three basic geometries in Fig. 1 we observe that, for a given non-zero
and finite Ω, larger the coupling constant, greater should be the Coulomb strength to
violate the stability of the bipolaronic state and set the polarons apart from one another.
In the Q2D-configuration with Ω selected as 10, for instance, we calculate the critical
Coulomb coefficient as Uc = 7.97, 16.12 and 32.52 for α = 5, 10 and 20, respectively.
Apparently, the same is true for the Q1D- and Q0D-configurations where for Ω = 10 we
correspondingly obtain Uc = 7.69(7.31), 15.96(15.79) and 32.48 (32.44) in the wire (box)
geometry.

Ωz

Ωp

106

104

102

100

10-2104

103

102

101

100

10-1

10-2

0.16

0.14

0.12

0.1

0.08

0.06

ηc

α=10

Figure 2. The critical ratio ηc as a function of the confining parameters for α = 10.

To give somewhat more impact to the role which parameter Ω plays in making α show
up explicitly in the phase picture, we repeat our numerical runs for a display against α and
provide an alternate presentation of the content of Fig. 1. An immediate glance at the set
of curves plotted in Fig. 3 reveals that, except in the extreme limits of small and very large
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Ω, the critical η displays rather drastic variations as α is varied. However, as the limit
Ω→ 0 is approached (cf., the curve for Ω = 1), we clearly observe that ηc tends to become
independent of α and simply take on the bulk value (0.131). Examining the variation of
ηc against α over a number of distinctive Ω values, one can easily trace out the means
ηc gradually loosing its dependence on α and conforming to the constant bulk limit as Ω
is made smaller and eventually turned off. Similarly, in the slab-type configuration (cf.,
Fig.3-a), referring to the set of curves plotted for considerably high degrees of confinement,
Ω >> 1, we see that as the strict two dimensional limit is attained, the relevant curves
tend to approach to the horizontal straight line ηc = 0.158, being stripped down to its
bare two dimensional characterization with no α-dependence at all.
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Figure 3. The critical ratio ηc as a function of α for a series of different Ω values in (a) the

quasi-two, (b)-one, and (c)-zero dimensional configurations.

As one further comment, we should note that in the slab configuration, whatever
the values of Ω and α are, there is always a non-zero critical η below which a stable
bipolaronic state can be realized. In the wire- and box-type confinements however, no
matter how weak the Coulomb strength might be set, there is always an upper value for
Ω beyond which the bipolaron breaks up into two individual polarons. Increased values
of α can only support the bipolaron to converse its stability at correspondingly higher
degrees of confinement.

In this article we have studied the possibility and criteria in achieving stable bipolarons
in low dimensionally confined media. The “deformable potential box”-model adopted in
this work allows us to attain a simple and yet comprehensive review of the two-polaron
problem within a unifying scheme interpolating between the bulk and all low dimensional
geometric configurations of general interest. It has been illustrated that in structures with
reduced dimensionality, the phase description displays an explicit relevance to the phonon-
coupling parameter α, distinguished from that reported earlier for the strongly coupled
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bipolaron in three and two dimensions. It has been shown further that in conforming
the potential box to a thin quantum well, the the critical ratio of the dielectric constants
may undergo an interesting variation, exhibiting a decrease first, then ascending and
eventually going over to its topmost two dimensional value.
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