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Abstract

A modified system of equations of electrodynamics of continuous media has been
obtained. Beside the Lagrangian system an alternative gauge-like formalism has
been developed to introduce the toroid moment contributions in the obtained equa-
tions. The two potential formalism that was worked out by us earlier has been de-
veloped further where along with the two vector potentials we introduce two scalar
potentials thus taking into account all four basic equations of electromagnetism.
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1. Introduction

The history of electromagnetism is the history of struggle of different rival concepts
from the very early days of its existence. After the historical observation by Hertz, all
main investigations in electromagnetism were based on the Maxwell equations. Neverthe-
less, this theory still suffers from some shortcomings inherited by its predecessors. Several
attempts were made to remove the internal inconsistencies of the theory. To be short we
refer to very few of them. One of the attempts to modify the theory of electromanetism
was connected with the introduction of magnetic charge in Maxwell equation by Dirac
[1,2], while keeping the usual definition of E and B in terms of the gauge potentials.
Recently D. Singleton [3] developed this theory introducing two four-vector potentials:
Aµ = (φe,A) and Cµ = (φm,C). Note that, a similar theory (two potential formalism)
was developed by us few years ago (we will come back to it in Sec. 3). The main defect
of the theory developed by Singleton in our view is that the existence of magnetic charge
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still lacks experimental support, hence can be considered as a mathematically convenient
one only.

Recently Chubykalo a.o. made an effort to modify the electromagnetic theory by
invoking both the transverse and longitudinal (explicitly time independent) fields simul-
taneously, thus giving an equal footing to both the Maxwell-Hertz and Maxwell-Lorentz
equations [4]. To remove all ambiguities related to the applications of Maxwell’s dis-
placement current they substituted all partial derivatives in Maxwell-Lorenz equations
by the total derivatives and separated all field quantities into two independent classes
with explicit {}? and implicit {}0 time dependence, respectively.

Another attempt to modify the equations of eletromagnetism is connected with the
existence of the third family of multipole moments, namely the toroid one. This theory
was developed by us during recent years. Recently, we introduced toroid moments in
Maxwel equations exploiting Lagrangian formalism [5]. In the Sec. 2 of this paper we
give a brief description of this formalism. Moreover, we develop here an alternative
method to introduce toroid moments in the equation of electromagnetism. In Sec. 3 we
develop two potential formalisms suggested by us earlier.

2. Introduction of Toroid Moments into the Equations of Electromagnetism

Ya. Zel’dovich [6] was the first to introduce anapole in connection with the global
electromagnetic properties of a toroid coil that are impossible to describe within the
charge or magnetic dipole moments in spite of explicit axial symmetry of the toroid coil.
Further, in 1974 Dubovik and Cheskov [7] determined the toroid moment in the framework
of classical electrodynamics. Recently, a principally new type of magnetism known as
aromagnetism was observed in a class of organic substances, suspended either in water
or in other liquids [8]. Later it was shown that this phenomena of aromagnetism cannot
be explained in a standard way, e.g., by ferromegnetism, since the organic molecules do
not possess magnetic moments of either orbital or spin origin. It was also shown that the
origin of aromagnetism is the interaction of vortex electric field induced by alternative
magnetic moments or axial toroid moments in aromatic elements [9]. These experimental
results force the introduction of toroid moments in the framework of conventional classical
electrodynamics, that in its part inevitably leads to the modification of the equations of
electromagnetism. In the following two subsections we give two alternative schemes for
the introduction of toroid moments in the electromagnetic equations.

A. Lagrangian Formalism

As a starting point we consider the interacting system of electromagnetic field and
non-relativistic charged particles given by the Lagrangian density [10]

L = Lpar + Lrad + Lint (1)

Lpar =
1
2

∑
α

mαq̇
2
α −

1
2

∑
α 6=β

eαeβ
| qα − qα
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Lrad =
1

8π

∫
[
Ȧ

2

c2
− (curlA2)]dr

Lint =
1
c

∫
J(r).A(r)dr =

∑
α

eα
c
q̇α.A(qα, t).

Here Lpar is the Lagrangian appropriate to a system of charged particles interacting
solely through instantaneous Coulomb force; it has the simple form of “kinetic energy
minus potential energy”. Lrad is the Lagrangian for a external radiation field far removed
from the charges and currents, and has the form of electric field energy imuns magnetic
field energy. The interaction Lagrangian Lint couples the particle variables to the field
variables. It can be easily verified that variation with respect to the particle coordinates
gives the second law of Newton with the Lorentz force:

mαq̈α = eαE(qα, t) +
eα
c

q̇α ×B(qα, t). (2)

Variation of the Lagragian (2.1) with respect to field variables gives the equation of motion
for the vector potential

∇×∇×A +
1
c2
∂2A

∂t2
= −4π

c
J (3)

Defining B=∇×A and E=-Ȧ/c one obtains

∇×B =
1
c

∂E
∂t

+
4π
c

J. (4)

It should be emphasized that in (2) and (4) E is the transverse part of the total
electric field. The Longitudinal electric field in question is entirely electrostatic.

The Hamiltonian corresponding to the Lagrangian (2.1) reads

H [
∏
, A; p, q] =

∑
α

pα.q̇α +
∫ ∏

.Ȧdr − L

=
∑
α

1
2mα

[pα −
eα
c

A(q, t)]2 +
1
2

∑
α 6=β

eαeβ
| qα − qβ |

(5)

+
1

8π

∫
[(4πc

∏
)2 + (∇×A)2]dr,

where the corresponding conjugate momenta are

Pα = mq̇α + (eα/c)A(q, t),
∏

(r) = (4πc2)−1Ȧ. (6)

It is well known that in classical dynamics the addition of a total time derivative
to a Lagrangian leads to a new Lagrangian with the equations of motion unaltered.
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Lagrangians obtained in this manner are treated to be equivalent. In general, the Hamil-
tonians following from the equivalent Lagrangians are different. Even the relationship
between the conjugate and the kinetic momenta may be changed [11]. Moreover, let
us notice that the basic equations of any new theory cannot be introduced strictly de-
ductively. Usually, either they are postulated in differential form based on the partial
integral conservation laws or transformations of basic dynamical variables, whose initial
definitions usually have some analog in mechanics. Let us remark that we need to do so
not only by inertia of thinking but also because of the fact most of our measurements
have their objects individual particles or use them in testing. The situation is the same in
electromagnetism and in gravitation. In general, geometrical interpretation of dynamical
variables plays the crucial role. An equivalent Lagrangian to that of (2.1) is [5].

Lequiv = L− 1
c

d

dt

∫
[P(r) +∇× T e(r).]A(r)dV, (7)

where the toroid contribution has been taken into account. Here, T e is the axial toroid
moment (ATM) and is electrical by nature (toroid dipole polarization vector of electric
type). Writing it in the explicit form we get the field conjugate to the vector potential
A:

4πc
∏

(r) : −D(r) = −(E(r) + 4π(P(r) +∇Te(r))).

Since only the free field E is generated due to the change of magnetic field B one
writes

∇×D(r) = −1
c
Ḃ(r) + 4π∇×P(r) +∇×∇×Te(r)), (8)

under ∇E(r)=-Ḃ(r)/c.
The new Lagrangian is a function of the variables qα, q̇α and a functional of the

field variables A, Ȧ, and the equations of motion follow from the variational principle.
Applying the Euler-Lagrange equations of motion one gets [5]

∇×B(r) =
1
c
D(r) +

4π
c
Jfree + 4π∇× (M(r) +∇×∇× Tm(r)). (9)

Here, the currents were divided into free and bound state (due to electric polarization
and magnetization) as [12]

J(r) = jfree + cM(r) + Ṗ(r), (10)

with the additional condition imposed on T e being.

∇×Tm,e = ±1
c
Ṫe,µ, (11)

where Tm is the toroid dipole polarization vector of magnetic type. Relation (2.10)
demands some comments. Both Te and Tm represent the closed isolated lines of electric
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and magnetic fields. So they have to obey the usual differential relations similar to the
free Maxwell equations [13,14]). However, we remark that the signs here are opposite to
the corresponding signs in Maxwell equations because the direction of the electric dipole
is accepted to be chosen opposite to its inner electric field [15].

If we define the auxiliary field H to be

H(r) = B(r)− 4π(M(r) +∇×Tm(r)) (12)

then it deduces to

∇×H =
1
c
Ḋ +

4π
c

jfree.

But the latter formula is unsatisfactory from the physical point of view. It is easy to
image the situation when B and M are absent, because the medium may be composed from
isolated aligned dipoles Tm [16-18] and each Tm is the source of free-field (transverse-
longitudinal) potential but not B [19]. So the transition to the description by means of
potentials is inevitable.

The Hamiltonian, corresponding to the equivalent Lagrangian, in this case reads

H≡[
∏
,A;p, q] =

∑
α

1
2mα[pα

− eα]
c

A[(q, t)]2 +
1
2

∑
α 6=β

eαeβ
| qα − qβ

+
1

8π

∫
[4π(P +∇×Te)−D]2 + (∇×A)2dr (13)

+
1
c

∫
J.Adr −

∫
M.Bdr −

∫
B.∇×Tmdr.

B. Gauge-like Transformation

The Maxwell equations for electromagnetic fields in media can be written as

∇×H− 1
c

∂D
∂t

=
4π
c
jfree (14a)

∇.D = 4πρ (14b)

∇×E +
1
c

∂B
∂t

= 0 (14c)

∇.B = 0 (14d)

where

D = E + 4πP, (14e)
H = B − 4πM (14f)
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In the previous subsection we introduced toroid moments into Maxwell equations through
Lagrangian formalism. In doing so we first constructed an equivalent Lagrangian. Here we
do the same using in an alternative way, which instead employs a gauge transformation.
To this end we introduce two vectors Tm and Te (toroid dipole polarization vector of
magnetic type and toroid dipole polarization of electric type, respectively) such that

P⇒ P +∇×Te, (15a)
M⇒M +∇×Tm. (15b)

It can be easily shown that system (2.13) is invariant under transformation (2.15) if we
impose the additional condition of (2.10), i.e.,

∇×Te,m = ±1
c

∂Tm,e

∂t
. (16)

In account of (2.15) and (2.16) we rewrite system (2.13) as

∇×B =
1
c
∂D∂t+

4π
c
jfree + 4π{∇×M +∇×∇×Tm} (17a)

∇.D = 4πρ (17b)

∇×D = −1
c

∂B
∂t

+ 4π{∇ ×P +∇×∇×Te} (17c)

∇.B = 0. (17d)

As is seen equations (2.17a) and (2.17c) of the system (2.17) completely coincides
with (2.8) and (2.7) of the previous subsection. Thus we introduced toroid moments in
Maxwell equations using two different formalisms.

3. Two Potential Formalism

It is commonly believed that the divergence equations of the Maxwell system are”
redundant”. Recently Krivsky a.o. [20] claimed that to describe the free electromag-
netic field it is sufficient to consider the curl-subsystem of Maxwell equations since the
equalities ∇·E=0 and ∇·B=0 are fulfilled identically. Contrary to this statement, Jiang
and Co [21] proved that the divergence equations are not redundant and that neglecting
these equations is at the origin of spurious solutions in computational electromagnetics.
Here we construct generalized formulation of Maxwell equations including both curl and
divergence subsystems. In this section we develop two potential formalism (a similar
formalism was developed by us earlier with the curl-subsytem taken into account only).
Note that in the ordinary one potential formalism (A, ϕ) of the second set of Maxwell
equations are fulfilled identically. So that all four Maxwell equations bring their contri-
bution individually, in our view, one has to rewrite the Maxwell equation in terms of two
vector and scalar potentials.
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Because of introduction of toroid moments (see Sec. 2) now B and D have lost their
initial meaning, hence should be reinterpreted. It means the deduction of the equation of
evolution by inserting B=∇·A and E=-Ȧ/c is valid no longer and we have to introduce
some new potential that could explain the new B and D. To this end we introduce a
so-called double potential [22,23,5]. As was mentioned, due to the introduction of toroid
moments the vectors B and D should be redefined. We denote these new quantities as β
and δ, respectively. In account of it, system (2.17) should be rewritten as

∇× β =
1
c

∂δ

∂t
+

4π
c
jfree (18a)

∇.δ = 4πρ (18b)

∇× δ = −1
c

∂β

∂t
(18c)

∇.β = (18d)

Before developing the two potential formalism we first rewrite system (2.13) in terms
of vector and scalar potentials A, φ such that B=∇×A and E=−∇ϕ − (1/c)(∂A/∂t).
Following any text book we can write system (2.13) as

�A = −4π
c

jtot = −4π
c

[jfree +
∂P
∂t

+ c∇×M ] (19a)

∆φ = −4π[ρ−∇.P] (19b)

under Lorentz gauge, i.e., ∇A+(1/c)(∂φ/∂t)=0 and

�A = −4π
c

[jtot = −4π
c
∇∂φ
∂t

] (20a)

∇2φ = −4π[ρ−∇.P] (20b)

under Coulomb gauge, i.e., ∇.A=0. Here, � = ∇2− (1/c2)(∂2/∂t2). Note that to obtain
(3.2) or (3.3) it is sufficient to consider (2.13a) and (2.13b) only since the two others are
fulfilled identically.

Let us now develop a two potential formalism. Two potential formalism was first
introduced in [22] and further developed in [23,5]. In both papers we introduce only
two vector potentials αm, αe and use only the curl-subsystem of the Maxwell equations
with the additional condition divαm,e=0. Thus, in our view our previous version of two
potential formalism lack of completeness. In the present paper together with the vector
potentials ϕm and ϕe such that

β̄ = ∇× αm +
1
c

∂αe

∂t
−∇ϕm. (21a)

δ̄ = ∇× αe − 1
c

∂αm

∂t
−∇ϕe. (21b)
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It can be easily verified that system of equations (3.1) are invariant under this transfor-
mation and take the form

�αm = −4π
c

[j + c∇∇Tm], (22a)

∇2ϕm = 0 (22b)

�αe = −4π
c

[∇P +∇∇Te], (22c)

∇2ϕe = −4πρ (22d)

under ∇αm,e + (1/c)(∂ϕe,m/∂t)=0 and

�αm = −4π
c

[j + c∇×M +∇×∇×Tm − 1
4π
∇∂ϕ

e

∂t
], (23a)

∇2ϕm = 0 (23b)

�αe = −4π
c

[∇×P +∇×∇×Te − 1
4π

∂ϕm

∂t
], (23c)

∇2ϕe = −4πρ (23d)

under ∇αm,e=0. The solutions to systems (3.5) and (3.6) can be written as follows (see
for example [5,25]): The solutions to the d’Alembert equation

�F (r, t) = f(r, t) (24)

look

F (r, t) = − 1
4π

∫
all space

f(r′, t′)dr′

r − r′ |t′=t−|r−r′|/c, (25)

whereas the solutions to the Poisson equation

∇2F (r) = f(r) (26)

read

F (r) = − 1
4π

∫
f(r′)dr′

|r − r′| . (27)

It is necessary to emphasize that the potential descriptions electrotoroidic and mag-
netotoroidic media are completely separated. The properties of the magnetic and electric
potentials αm and αe under the temporal and spatial inversions are opposite [13]. The
potential αe(αm) is related to the toroidness of the medium Te (Tm) as B (D) to M (P).

Note that if ∇δ 6=0 and there does exist free current in the medium we have to use the
direct method for finding all constrains in the theory suggested by Dirac. Dirac applied
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his method to electrodynamics and found that electromagnetic potentials have only two
degrees of freedom described by transverse components of vector potential. This method
was developed by Dobovik and Shabanov [24], where classical and quantum dynamics of
a system of non-relativistic charged particles were considered.

4. Conclusion

The modified equations of electrodynamics has been obtained in account of toroid
moment contributions. The two-potential formalism has been further developed for the
equations obtained. Note that introduction of free magnetic current jmfree and magnetic
charge pm in the equations (3.1c) and (3.1d) respectively leads to the equations obtained
by Singleton [3].
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