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Canonical Treatment of Regular Lagrangians with
Holonomic Constraints as Singular Systems

Eqab M. RABEİ
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Abstract

Regular Lagrangians with holomonic constraints are treated as singular systems
using the canonical method. The Lagrange multipliers are introduced as gener-
alized coordinates. The regular Lagrangians are extended to be singular and the
Hamiltonian formulation is obtained. The equations of motion are written as to-
tal differential equations in terms of the time t and the Lagrange multipliers. It
is also shown that Lagrange multipliers can be determined from the integrability
conditions.

PACS : 03.20. + i, 02.90. + P

Introduction

The investigation of constrained dynamic systems may be discussed under two basic
headings: the investigation of regular Lagragians with given constraints and the investi-
gation of systems with singular Lagrangians.

The study of regular Lagrangians with holonomic constraint equations, fα(qi, t) =
0, i = 1, 2, . . .n and α = n + 1, n + 2, . . . , n + m are discussed in standard texts [1,2].
Hamilton-Jacobi differential equation of systems with regular Lagrangian and constraint
equations has been constructed by Guler [3]. Lagrange multipliers are introduced as
generalized velocities and the constraint functions are the generalized momenta conjugate
to the Lagrange multipliers.

Singular Lagrangians, however, need considerably more care and somewhat specialized
techniques, Since the study of singular Lagrangians, having a degenerate Hessian matrix
does not allow all the velocities to be expressed in terms of the coordinates and momenta.
The formalism for treating singular systems was initiated by Dirac [4]. He showed that,
in the presence of constraints, the number of degrees of freedom of the dynamic system
can be reduced. His approach was extended to continuous systems [5]. Other researchers
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[6-10] followed Dirac and showed interest in singular field theories.
A powerful approach, the canonical method, has been developed for investigating

singular systems [11-13]. In this approach the equations of motion are written as to-
tal differential equations and the formulation leads to a set of Hamilton-Jacobi partial
differential canonical equations which are familiar in regular systems.

The purpose of the present work is to treat the regular Lagrangians with given holo-
nomic constraints as singular systems. The Lagrange multipliers λα are treated as gen-
eralized coordinates and the singular Lagrangian is constructed.

In section 2, the Hamiltonian formulation is proposed and three simple examples are
given in section 3.

Hamiltonization

The standard method for incorporating the constraint functions to the equations of
motion is the use of the so-called Lagrange multipliers. The motion of a holonomic systems
could in principle be determined by making use of the n Euler Lagrange Equations,

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= λα

∂fα
∂qi

, i = 1, 2, . . .n (1)

together with the m constraints

fα(qi, t) = 0, α = n+ 1, n+ 2, . . . , n+m (2)
where L is regular which is a function of n generalized coordinates qi and n generalized
velocities q̇i as well as the time t.

Now, let us construct the new Lagrangian by adding the holonomic constraints mul-
tiplied by the Lagrange multipliers to the regular Lagrangian i.e.

L′(qi, λα, q̇i, t) = L(qi, q̇i, t) + λαfα (3)
where a repeated suffix assumes a summation over values of that suffix. We introduce
the Lagrange multipliers as generalized coordinates. Thus, the new Lagrangian is singu-
lar. The Hesse determinant of L′ is (n+m) x (n+m) determinant formed by the partial
derivatives of this extended Lagrangian with respect to q̇i and λ̇α. In other words, the
following determinant vanishes ∣∣∣∣∣

∂2L′

∂q̇i∂q̇j
∂2L′

∂q̇i∂λ̇α
∂2L′

∂λ̇β∂q̇j

∂2L′

∂λ̇β∂λ̇α

∣∣∣∣∣ (4)

The Euler-Lagrange equations for the extended Lagrangian will be increased by m
equations

d

dt
(
∂L′

∂q̇i
)− ∂L′

∂qi
= 0 (5)

d

dt
(
∂L′

∂λ̇α
)− ∂L′

∂λα
= 0 (6)

1084



RABEİ

Equation (5) leads to Equation (1) while Equation (6) gives the holonomic constraints
(2).

The canonical Hamiltonian

H0 = q̇ipi + λ̇αpα − L′ (7)

can be calculated using the definition of the canonical momenta

Pi =
∂L′

∂q̇i
(8)

Pα =
∂L′

∂λ̇α
= 0 (9)

Making use of Eqs (8) the generalized velocities can be obtained in terms of generalized
coordinates qi and generalized momenta Pi, i.e.

q̇i = wi(pi, qi, t)

Thus, the canonical Hamiltonian H0 can be written as

H0 = wi(Pi, qi, t)Pi − L(qi, q̇i ≡ wi(Pi, qi, t), t)− λαfα(qi, t) (10)

following to the canonical method the set of the Hamilton-Jacobi partial differential
equations read as

H ′0 = P0 +H0 (11)

H ′α = Pα (12)

which can be written in a compact form as

∂s

∂t
+H0 = 0 (13)

∂s

∂λα
= 0 (14)

According to previous publications [11-13], these calculations lead to the following
equations of motion which are total differential equations

dqi =
∂H0

∂Pi
dt+

∂H ′α
∂Pi

dλα (15)

dPi = −∂H0

∂qi
dt− ∂H ′α

∂qi
dλα (16)
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dPα = −∂H0

∂λα
dt− ∂H ′α

∂λα
dλα (17)

The last equation leads to the holonomic constraints which are total time derivative
of the generalized momenta Pα

Ṗα = fα(qi, t) (18)

Since the equations of motion are total differential equations, integrability conditions
should be checked. As mentioned in previous publications, equations of motion are in-
tegrable if the variations of H ′α vanish identically. If they do not vanish identically we
consider them as new constraints. This procedure continues until the Lagrange mul-
tipliers are determined. According to these conditions the variations of the holonomic
constraints should be equal to zero.

dfα(qi, t) = 0 (19)

Making use of equations (15) and (16), equations (19) determine the Lagrange mul-
tipliers or lead to new relations between coordinates and momenta. Thus, taking the
variations of the new relations one can determine the Lagrange multipliers.

Sample Illustrations

The procedure described in the previous sections will be made clear by discussing the
following examples:

1. A disk rolling down an inclined plane
As a first example let us discuss the motion of a disk of radius R that is rolling down

an inclined plane without slipping. The Lagrangian of this system reads as:

L =
1
2
Mẏ2 +

1
4
MR2θ̇2 +Mgy sin Ψ (20)

where M is the mass of the disk, g is the acceleration of gravity and Ψ is the angle of
inclination. The equation of the holonomic constraint giving the relation between the
coordinates y and θ is

f(y, θ) = y −Rθ = 0 (21)

Thus, the equivalent Lagrangian L′ constructed as,

L′ = L+ λ(y − Rθ) (22)

The canonical momenta are

Py = Mẏ (23)

Pθ =
1
2
MR2θ̇ (24)
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Pλ = 0 (25)

The Hamiltonian H0 is calculated as

H0 =
P 2
y

2M
+

P 2
θ

MR2
−Mgy sinψ − λ(y −Rθ) (26)

Making use of Eqs (15-17) the equations of motion take the form

dy =
Py
M
dt (27)

dθ =
2Pθ
MR2

dt (28)

dPy = (Mg sinψ + λ)dt (29)
dPθ = −λRdt (30)
dPλ = (y −Rθ)dt (31)

The last equation (31) leads to the holonomic constraint (21). According to the inte-
grability conditions the total differential of the holonomic constraints should be equal to
zero.

df = dy −Rdθ = 0 (32)

using equation (27) and equation (28) one gets a new relation between momenta

RPy − 2Pθ = 0 (33)

Taking the total differential of this new relation, and making use of equations (29) and
(30), the Lagrange multiplier can be determined as

λ = −1
3
Mg sinψ (34)

This gives the magnitude of force of constraint resulting from a frictional force, and there
are no further constraints.

Using equations (27-30) with the aid of (34) one gets

ÿ =
2
3
g sinψ (35)

θ̈ =
2
3
g

R
sinψ (36)

These results are in exact agreement with those obtained using the Euler-Lagrange equa-
tions with the aid of Lagrange multipliers.
2. A bead placed on top of a vertical hoop.
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As a second example, let us consider a bead of mass M placed at the top of a vertical
hoop. The Lagrangian of this system reads as

L =
1
2
M(ṙ2 + r2θ̇2) −Mgr cos θ (37)

and the holonomic constraint is

f(r) = r −R (38)

where R is the radius of the hoop. Thus the extended Lagrangian is

L′ = L + λ(r −R) (39)

Using the definition (10) the Hamiltonian is calculated as

H0 =
P 2
r

2M
+

P 2
θ

2Mr2
+ Mgr cos θ − λ(r −R) (40)

Thus, the equations of motion are

dr =
Pr
M
dt (41)

dθ =
Pθ
Mr2

dt (42)

dPr = −(Mg cos θ − P 2
θ

Mr3
− λ)dt (43)

dPθ = Mgr sin θdt (44)
dPλ = (r − R)dt = 0 (45)

Eq.(45) gives the holonomic constraints (38). Taking the total differential of f(r) gives

dr = 0 (46)

The Lagrange multiplier is determined using this condition with the above equations

λ = Mg cos θ−MRθ̇2 (47)

θ̈ =
g

R
sin θ (48)

These equations are the Eluer-Lagrange equations and they can be solved to obtain the
reaction of the hoop on the bead.

λ = Mg(3 cos θ − 2) (49)

3. A bead slides on a helix
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Finally, let us discuss the motion of a bead that is free to slide on a smooth wire bent
so as to form a helix, the equations of which, in cylindrical coordinates, are Z = kθ and
r = R, where k and R are constants. The origin is the center of an attractive force that
varies directly with distance. The Lagrangian of this system is

L =
1
2
M(ṙ2 + r2θ̇2 + ż2) − 1

2
α(r2 + z2) (50)

where α is a constant. The holonomic constraints are

f1 = r − R (51)
f2 = z − kθ (52)

Thus, the extended Lagrangian is

L′ = L + λ1(r − R) + λ2(z − kθ) (53)

The canonical Hamiltonian is calculated as

H0 =
P 2
r

2M
+

P 2
θ

2Mr2
+
P 2
z

2M
+

1
2
α(r2 + z2)− λ1(r −R) − λ2(z − kθ) (54)

and the equations of motion are

dr =
Pr
M
dt (55)

dθ =
Pθ
Mr2

dt (56)

dz =
Pz
M
dt (57)

dPr = (
P 2
θ

Mr3
− αr+ λ1)dt (58)

dPθ = −λ2kdt (59)
dPz = (−αz + λ2)dt (60)
dP1 = (r −R)dt (61)
dP2 = (z − kθ)dt (62)

Noting that P1 and P2 are the generalized momenta which conjugate to λ1 and λ2.
Equations (61) and (62) give the holonomic constraints (51) and (52).

According to the integrability conditions the total differential of these constraints
should be equal to zero thus,

dr = 0 (63)
dz − kdθ = 0 (64)
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The first condition determines the Lagrange multiplier λ1, i.e.

λ1 = αR− P 2
θ

MR3
(65)

and the second leads to new relation

kPθ −R2Pz = 0 (66)

Again, calculating the total differential of this equation we determine the Lagrange
multiplier λ2

λ2 =
R2α

k2 +R2
z (67)

Then, the equations of motion (55-60) can be written as,

θ̇ =
Pθ
MR2

(68)

ż =
Pz

M
(69)

Ṗθ = − kR2α

k2 + R2
z (70)

Ṗz = −αz +
R2α

k2 + R2
z (71)

(72)

Obviously, solutions of these equations determine the Lagrange multipliers.

Conclusion

Regular Lagrangian with holonomic constraints are investigated by the canonical
method. The Lagrange multipliers are treated as generalized coordinates. It seems that
our formulation predicts n+m generalized coordinates corresponding to n+m generalized
momenta. In other words the phase-space is extended to obtain singular Lagrangian, in
(2n+2m)-dimensional phase space.

As a conclusion it is observed that the holonomic constraints are equal to the total
time derivatives of the momenta conjugates to the Lagrange multipliers. In addition, the
solutions of the three given examples are in complete agreement with the Euler-Lagrange
equations.
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