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Abstract

We discuss the magnetisation deviation in two-dimensions (2d) for an iron film
for which the anisotropy is much smaller and hence the magnetisation is a stronger
function of temperature. The magnetisation deviation can be adequately described
by an RPA (random phase approximation) approach. Our results fit the experimen-
tal data at high fields and hence can be used to estimate the value of the effective
exchange interaction (J2d) for monolayer (ML) films.

Introduction

It is well known that in two dimensions (2d) a system possessing a continuous symme-
try does not exhibit a conventional long-range order meaning that the expectation value
of the order parameter vanishes at all finite temperatures, provided that the interaction
between the spins is isotropic and that the interaction is short ranged [1].

In epitaxial structures, neither the magnetostatic dipole-dipole interaction nor mag-
netic anisotropies can be avoided, which break the continuous symmetry of the Heisenberg
Hamiltonian. The direct result of this symmetry breaking is the occurence of long-range
order below a well-defined temperature Tc.

However for a film with a uniaxial anisotropy favouring a perpendicular easy magneti-
sation axis, long-range order can exist at finite temperatures since the anisotropy gives
rise in this case to a significant spin-wave gap [2,3], but no such gap arises the case in
which in-plane orientation of the magnetisation is favoured.

In our earlier work [4] we presented the results of a combined experimental and the-
oretical study of the finite temperature magnetisation of ultrathin epitaxial films and
showed that the experimentally observed stabilisation of the magnetisation of ultrathin
Co films with planar anisotropy is due to the in-plane magnetocrystalline anisotropy and
Zeeman energy rather than the dipole interactions alone.

Lugert et al [6] have recently measured the sample moment M(T) of an iron film in a
constant applied field as a function of temperature. They have grown ultrathin epitaxial
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Fe (110) single films by MBE (molecular beam epitaxy) on Au (111). Ferromagnetic order
was observed down to the thinnest films of 0.5 monolayer (ML) average thickness. In their
experiments the effective magnetic anisotropy with respect to the film normal (surface
anisotropy minus the demagnetizing effects) shows a strong thickness dependence: below
3ML the easy axis switches from in plane to perpendicular, this is the consequence of a
strong magnetic interface anisotropy dominating the dipolar anisotropy at small thickness.

In this work, we investigate the magnetisation deviation which can be adequately
described by the RPA approach to estimate the value of the effective exchange interaction
in the monolayer film. We also calculate the numbers of monolayers, N.

1. Calculation of Magnetisation

We assume that the magnetisation deviation is determined by the excitation of spin waves
and may be adequately described by an RPA (random phase approximation) approach
which gives a set of bosons whose frequency is a function of T. This approach also becomes
exact at low temperatures.

We consider an RPA calculation for a s = 1/2 model (Tyablicov theory) [7]. The
magnetisation < sz > is given in terms of averages of spin ladder operators.

< sz >=
1
2
− < s−n s

+
n >=

1
2
− 1
N

∑
k

< s−k s
+
k > . (1)

The correlation function is found from the two-time Green function which has been cal-
culated using an RPA coupling,

< s−n s
+
n >' 2 < sz >

eβεk − 1
, (2)

where εk is the spin-wave energy and β = 1/kT . Substituting Equation (2) in Equation
(1), we get

< sz >=
1

2N
∑

k coth βεk
2

. (3)

Here in the Tyablicov decoupling εk is a function of the magnetisation, i.e., εk = Do
S <

sz > k2 and D(T ) = Do < sz > /s (a crude approximation over estimated renormaliza-
tion of εk). Hence,

∑
k

coth
βεk
2

=
A

2π

∫ π/a

0

dkk coth
βεk
2

=
AkBT

2πDo < sz >

[
ln sinh

βεmax
2
− ln sinh

βεo
2

]
. (4)
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By considering our conditions in which the limits are the energy gap εo and the value
of εk on the zone boundary εmax, ln sinh βεmax

2 >> 1 and ln sinh βεo
2 << 1 we can write

∑
k

coth
βεk
2
' C − AkBT

4πDo < sz >
ln

εo
kBT

where C ' 1. In two dimensions the integrals can be calculated as given in [4,5]

< sz >=
1
2
− < sz > a2kBT

4πNDo < sz >
ln(

kBT

εg
), (5)

where Do = 2Jsa2. The< sz >which appears in the denominator arises because the RPA
approximation predicts that the spin wave stiffness is linearly proportional to < sz >:

< sz >=
1
2

(
1− a2

2πDo
kBT ln

kBT

εg

)
. (6)

We can write this in the form

M(T )
Mo

= 1− T

Te
ln(

T

Tg
), (7)

where the exchange temperature Te is determined by the atomic spin and the strength
of the exchange interaction and is given by Te = 8πSµBHex/kB, and Tg is the gap
temperature [4]. Hex is the effective field and is given by Hex = D/(gµBa2), where D is
the spin wave stiffness for the propagation of spin waves in the film and a is the lattice
parameter [4]. Here, the RPA approximation is equivalent to the non-interacting spin
wave theory, which is special to 2d. Equation (7) was obtained by cancelation of < sz >
in the numerator and denominator of Equation (5). In a magnetic field

kBTg = εanis + gµBHanis, (8)

where εanis and Hanis are the in-plane anisotropy energy and the anisotropic field, re-
spectively. The anisotropy energy is expected to vary with the magnetisation.

We find that we can fit Lugert et al’s [6] data very satisfactorily at high fields (for
H=10 kOe) to Equation (7) by neglecting the in-plane anisotropy, εanis. This is shown
in Figure 1a. For low temperatures and large M the error should not be severe (the
linear spin wave theory is exact as T → 0 ) so we fit the experimental data in the region
1
2 <

M
Mo

< 1 only.

1095



KAPLAN

1.00

0.90

0.80

0.70

0.60

0.50

0.40

M
(T

)/
M

(O
)

_

_

_

_

_

_ _

0 100 200 300

T(K)

1 KOE
10 KOE

Theory(1 kOe, down)
Theory(10 kOe, up)

Fe (110) on Au (111)

(a)

1a.

_

0 100 200

T(K)

50 Oe
100 Oe

Theory(50 Oe, down)
Theory(100 Oe, up)

Fe (110) on Au (111)

(b)

1.00

0.90

0.80

0.70

0.60

0.50

0.40

M
(T

)/
M

(O
)

_

_

_

_

_

1b

Figure 1. The temperature dependence of spontaneous magnetisation: (a) 1 kOe and 10 kOe;

(b) 50 Oe and 100 Oe (in this case the theoretical and experimental points agree only if anisotropy

is as shown in figure 2).

However, at lower fields such as 1 kOe, 100 Oe and 50 Oe, we have a poor fit without
anisotropy as illustrated in Figures 1a and 1b. Obviously, the data are different at lower
fields. By using Equation (7), in which a value of ∼ 3800 K is used for Te, we have one
parameter per point for fitting procedure to find the Hanis fields. This is shown in Figure
2. We have assumed an error of 0.01 in the experimental value of (Mo−M)/Mo and used
this to deduce approximate error bars in this Figure. Where (Mo −M)/Mo is small the
theory is very insensitive to the value of εanis (which appears in a logarithim) and hence
the error bars are very large. We see that within the errors we find that our assumption
that Hanis depends only on M and is independent of the external field is shown to be
reasonable. As seen from this Figure, the anisotropy field is less than or on the order
of 3 kOe. This confirms our earlier assumption that the results at 10 kOe can be fitted
without including anisotropy.

We now consider only the 10 kOe data. From the satisfactory nature of this fit (see
Figure 1a, for H=10 kOe) we conclude that our theory is reasonable and therefore we can
use the value (3800± 200K) of Te to deduce the exchange interaction in the monolayer
film. This is a very interesting result because it is the first time that this quantity has
been measured directly.

In three dimensions (3d) the magnetisation varies as
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M(T )
M(o)

= 1−AT 3/2, (9)

where the constant A has the experimental value (3.4± 0.2)× 10−6 deg−3/2 for Fe in 3d
[9]. Equation (9) can be written in the form:

4M(T )
M(0)

=
0.0587
SQ

(
kBT

2JS

)3/2

, (10)

where Q = 1, 2, 4 for sc, bcc, fcc lattices, respectively [9].
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Figure 2. The anisotropic field as a function of magnetisation deviation.

We compare the value of J2d in plane with the value for 3d by evaluating both Te and A
in terms of J . By using Equation (10), we find the effective exchange interaction in three
dimensions as (2JS)/kB = J3d ' 700K for Fe. In two dimensions, the magnetisation
varies as
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4M(T )
M(0)

=
T

Te
ln(

T

Tg
), (11)

where Te and Tg were determined in Reference [4]. From Equation (11) we find (2JS)/kB =
J2d ' 300K and thus

J2d

J3d
' 0.42. (12)

This was evaluated assuming that there is one cell of Fe (volume a3 containing 2 Fe
atoms) in the layer. If in fact there is only a square array of area a2 containing one Fe
atom then the result is doubled, i.e. J2d

J3d
' 0.84.

A few words are in order about the validity of the RPA result given by Equations
(1) and (2) in 2d. It works relatively well in 3d where it predicts Tc which is much
better agreement with experiment than mean field theory. However, in 2d the result is
much more suspect. The first peculiarity is that, the magnetisation deviation depends
only on the spin wave energy gap and is the same for easy axis and easy plane (with in
plane anisotropy) with the same energy gap. This is suspect since we know that as the
anisotropy goes to zero in the easy axis case, we go to a Heisenberg model with Tc = 0
whereas as the in-plane anisotropy vanishes in the case of easy plane the system develops
a Kosterlitz-Thouless phase [8]. Such subtleties are lost in the crude RPA approximation.

However there is an even worse consequence of Equation (5). Consider the situation
in which there is an external field H, there is a finite energy gap given by,

kBTg = gµBH

M(T )
M(o)

= 1− T

Te
ln
T

Tg
. (13)

Then the magnetism is zero for T > Tc where Tc is given by

Tc
Te

ln
Tc
Tg

= 1. (14)

This means that the theory predicts a zero susceptibility for T > Tc and demonstrates
the inapplicability of the RPA in this temperature region in two-dimensions. The origin
of this error is of course the RPA result which predicts that the spin wave stiffness D
vanishes as < sz >→ 0.

The spin wave energies were calculated [4,5] for the cases of easy axis and easy plane
in which the Hamiltonian contains exchange, cubic anisotropy, uniaxial anisotropy and
Zeeman energies. The effect of an external magnetic field is to add a term gµBH to
the coefficient A. The spin waves are of two types: those in which the k vector lies in
the plane which may be of very small k and excitations across the film containing N
monolayers which correspond to k⊥ = n πN ;n=1....N. The film behaves 2-dimensionally
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when the only modes which are thermally excited correspond to k⊥ = 0. We calculate
the maximum thickness for the films to behave two dimensionally over the temperature
range of interest.

We now consider how thin a film should be for it to be correctly described by the
2d theory. We evaluate the largest N for the 2d theory to be valid up to 300 K. The
magnetisation deviation per site will be the sum over the modes for k‖ and k⊥. No
significant excitations of spin waves k⊥ film are assumed to occur over the temperature
region of interest. From the magnetisation we can estimate the effective exchange for a
thin film. We use the 3d value for (2JS)/kB = J3d (=700 K for Fe) [9] because it is
known that the Curie temperature Tc increases rapidly with the sample thickness. For
a film of N monolayers the smallest value of k⊥ is (π/aN). This leads to an excitation
energy, ε⊥, of:

ε⊥ ' 2JSa2(
π

Na
)2 = kBT⊥. (15)

The excitation of this mode will be negligible for temperatures T such that

T ≤ (
1
2

)T⊥. (16)

We demand that for T = 300K that kBT ≤ 1
2
ε⊥, this gives us the required condition

on N for this to hold for T ≤ Tc. We find that the film is effectively 2d for N ≤ 3.

2. Conclusions

We show that our results fit the data at high fields and hence can be used to estimate the
value of the effective exchange for monolayer films. It is important to separate the statis-
tical mechanics of a 2d array of spins from the determination of the in-plane exchange.
It is only because we have a convincing fit of the theory as a function of both T and H
(at high fields) that we are able to determine J2d for the first time.
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