

Turkish Journal of Veterinary and Animal Sciences

http://journals.tubitak.gov.tr/veterinary/

Research Article

Turk J Vet Anim Sci (2014) 38: 26-33 © TÜBİTAK doi:10.3906/vet-1307-19

Evaluating the effects of chitosan, plant oils, and different diets on rumen metabolism and protozoan population in sheep

Monika WENCELOVÁ, Zora VÁRADYOVÁ*, Katarína MIHALIKOVÁ, Svetlana KIŠIDAYOVÁ, Dušan JALČ

Department of Physiology of the Gastrointestinal Tract, Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovakia

Received: 10.07.2013	٠	Accepted: 02.10.2013	٠	Published Online: 18.12.2013	٠	Printed: 20.01.2014
----------------------	---	----------------------	---	------------------------------	---	---------------------

Abstract: Chitosan (CH) has been shown to be a promising natural antimicrobial agent. This study examined the effects on rumen metabolism when providing diets containing high forage (HFD), low forage (LFD), and maize silage (MSD) to a 24-h batch culture in which the diets were not supplemented (control) or were supplemented with CH (100 mg/L), sunflower oil (SF, 35.0 g/kg dry matter), rapeseed oil (RP, 35.0 g/kg dry matter), or SF and RF with chitosan combinations (SFCH and RPCH). Dry matter digestibility in the batch culture was influenced by CH and was decreased in HFD compared with the control (P < 0.01). Decreasing total number of protozoa and the number of *Entodinium* spp. was evident, especially in LFD and MSD, with all additives. RPCH had a predominantly adverse effect on *Dasytricha ruminantium* in MSD. Interactions of the diets × additives in the majority of rumen ciliate populations were detected. The concentrations of trans-vaccenic acid and conjugated linoleic acid (c9, t11-CLA) were unchanged by chitosan. However, the combination of SF and RF with chitosan (SFCH and RPCH) positively affected fatty acid profiles, which might be related to differences in diets, SF or RP composition, and different microbial activity in the batch cultures.

Key words: Chitosan, sunflower oil, rapeseed oil, rumen ciliate protozoa, fatty acids

1. Introduction

A trend among rumen microbiologists and nutritionists is to manipulate the ruminal microbial ecosystem with feed additives that alter the microbial ecosystem in order to improve the efficiency of feed conversion to produce consumable products for humans. Chitosan, a natural antimicrobial agent, is a deacetylated derivative of chitin (N-acetyl-glucosamine polymer); it has a high molecular weight and is the second most abundant natural biopolymer commonly found in the shells of marine crustaceans and the cell walls of fungi (1). Its antimicrobial properties have been widely accepted (2). Possible effects due to its antimicrobial properties on rumen microorganisms may be questionable. Although the negative effects of chitosan on the rumen ciliate protozoa population could be useful, such effects on rumen bacteria, with the consequent decrease in dry matter digestibility, would be harmful. The use of chitosan in ruminant diets influences rumen fermentation processes both in vitro and in vivo (3-6), and it can also inhibit in vitro rumen biohydrogenation when fat sources are included (7). Rumen ciliate protozoa play an important role in increasing the concentration of conjugated linoleic acid (cis9, trans11C $_{18:2}$; c9, t11CLA) and trans-vaccenic acid (trans11C_{18:1}; TVA) in the rumen fluid (8,9), and their alteration by chitosan or by a combination of both additives (i.e. chitosan and plant oil) in different diets could influence rumen fermentation and metabolism. Therefore, the aim of the present study was to determine the influence of chitosan (CH), sunflower oil (SF), rapeseed oil (RP) and their combination (i.e. SFCH and RPCH) on rumen fermentation, rumen ciliate protozoa, and the composition of fatty acids in rumen fluid of sheep incubated with a high forage diet (HFD), low forage diet (LFD), and maize silage diet (MSD).

2. Materials and methods

2.1. Animals and sampling

Rumen inoculum was obtained from 5 rumen-cannulated rams (Lacaune versus Suffolk; 1 year of age; 25.0 ± 0.5 kg in weight) that had been fed 800 g dry matter (DM) of meadow hay and 300 g DM of crushed barley grain in 2 equal meals per day. The rams were housed separately in pens and had free access to water. Rumen fluid was collected before the morning feeding using a manual vacuum pump into a prewarmed (39 ± 0.5 °C) thermos flask filled with CO₂. The rumen fluid from all sheep was

^{*} Correspondence: varadyz@saske.sk

combined proportionally and blended under CO₂ in a prewarmed blender for 30 s, squeezed through 4 layers of cheesecloth into a pre-warmed flask under a constant stream of CO₃, and kept in a water bath at 39 ± 0.5 °C.

The rumen fluid was mixed (1:1), under continuous flushing with CO_2 , with McDougall's buffer (10) After mixing, 35 mL of rumen content inocula was pumped by an automatic pump into preheated fermentation bottles (100-mL serum bottles) containing the diet substrates. The fermentation bottles were then filled up with CO_2 and closed with butyl rubber stoppers and aluminum screw caps. The incubation was performed in the incubator for 24 h at 39 ± 0.5 °C.

Meadow hay and barley grain were used as the components (substrates) of both a HFD (800:200 w/w) and a LFD (500:500 w/w), respectively. The MSD consisted of maize silage. The substrates were ground and sieved (0.15-0.4 mm) and added in a total amount of 0.25 g of absolutely DM into each individual batch culture supplemented

(35.0 g/kg DM) with SF or RP from commercial sources. Chitosan (poly (D-glucosamine)-deacetylated chitin, Sigma-Aldrich Co., St. Louis, MO, USA) was added in a dose of 100 mg/L of culture fluid. Nutrient and fatty acid composition of the diet substrates is shown in Table 1.

The experiment consisted of an in vitro batch fermentation trial with 3 diets (i.e. HFD, LFD, or MSD). Ten replications were used for all the experimental groups rumen inoculum plus a diet substrate (i.e. HFD, LFD or MSD) plus an additive (i.e. CH, SF, RP, SFCH, or RPCH). Ten replicates were used as controls (rumen inoculum plus diet substrate, but no additives). Blanks containing 35 mL of buffered rumen fluid (inoculum, no diets and no additives) were run simultaneously for examination of fermentation activity of the media (results are not shown). At least 2 independent experiments were performed.

Samples of the fermentation fluid for microscopically counting ciliate protozoa were fixed with an equal volume of 8% formaldehyde (11).

Table 1. Nutrient and fatty acid composition of diet substrates and plant oils.

	Meadow hay	Barley grain	Maize silage	Sunflower oil	Rapeseed oil	
Dry matter (g/kg)	924	900	320	-	-	
Nutrient composition (g/kg of dry matte	er)					
Nitrogen	8.90	22.1	11.7	-	-	
Crude protein	53.3	120	73.2	-	-	
Neutral detergent fiber	576	261	410	-	-	
Acid detergent fiber	368	67.4	245	-	-	
Fat	22.7	24.1	30.0	-	-	
Ash	80.0	37.0	52.1	-	-	
Starch	-	550	275	-	-	
Fatty acid composition (g/kg of fatty aci	ds)					
C _{14:0} myristic	21	12	8.20	1.0	0.5	
C _{16:0} palmitic	330	288	238	57	47	
C _{16:1} palmitoleic	21	11	7	1.4	2.2	
C _{18:0} stearic	48	27	29.5	32	36	
C _{18:1} oleic	101	204	193	329	539	
C _{18:2} linoleic	183	364	366	535	205	
$C_{_{18:3}} \alpha$ -linolenic	138	32	122	10	94	
Saturated fatty acids	400	330	308	97	89	
Monounsaturated fatty acids	145	224	200	333	558	
Polyunsaturated fatty acids	352	402	492	545	306	

2.2. Chemical analysis

Standard methods were used for the chemical analysis of substrates: DM (No. 967 03), ash (No. 942 05), nitrogen (No. 968 06), fat (No. 983 23), crude protein (No. 990 03), and starch (No. 948 02) (12). Dried samples were analyzed for neutral detergent fiber (NDF) and acid detergent fiber (ADF) (13) using a Fibertec 2010 (Tecator Comp., Höganäs, Sweden).

The volume of released gas was measured by the pressure transducer technique, and in vitro DM digestibility (IVDMD) was estimated from the difference in dietary substrate weight before and after incubation. Gases from each fermentation bottle were analyzed for methane concentration using a PerkinElmer Clarus 500 gas chromatograph (PerkinElmer, Inc., Shelton, CT, USA). The concentration of short-chain fatty acids (SCFA) in the medium was determined by gas chromatography with a PerkinElmer Clarus 500 gas chromatograph (14). The fatty acid (FA) content was determined from freeze-dried samples using a Thermo Savant Micromodulyo freezedrier (Thermo Savant Micro Modulyo, NY, USA). Lipids were extracted from 500 mg of freeze-dried sample with a mixture of chloroform:methanol (2:1). The FA methyl esters peaks were identified by authentic standards of $C_4 - C_{24}$ FA methyl ester mixture (Supelco, Bellefonte, PA, USA) by gas chromatography (PerkinElmer Clarus 500 gas chromatograph, PerkinElmer, Inc. Shelton, CT, USA).

The results were analyzed statistically by analysis of variance (Graphpad Instat, Graphpad Software Inc., San Diego, CA, USA). All values are shown as means with pooled standard errors of the means (SEM). Effects included in the model were diets (D), 2 levels of chitosan (present versus absent), 2 kinds of oils (SF and RP), combinations of oils with chitosan (OCH), and the interactions between parameters (D × CH, D × O, D × OCH). The treatment effect (i.e. control versus SFCH, and control versus RPCH) was considered significant when no significant diet × additive interaction occurred. Differences from the control were analyzed using a Bonferroni post-test and considered to be significant when P < 0.05.

3. Results

The diets (D) affected the results in all fermentation parameters except acetate and propionate (P < 0.001; Table 2). IVDMD in the batch culture was influenced by chitosan and in the HFD was decreased compared with the control (P < 0.01). The diet × oil interaction (D × O) and diet × oil with chitosan (D × OCH) affected the results in IVDMD (P < 0.001). Total gas production was influenced by chitosan (P < 0.001), oil (P < 0.001), and oil with chitosan (P < 0.001), and it decreased statistically or numerically during fermentation in all diets compared with the control. An

effect of CH (P < 0.01) and the interaction D × CH (P < 0.001) in methane production was detected. The D × CH, D × O, and D × OCH interactions affected the total SCFA production (P < 0.01 and P < 0.001). The molar proportion of n-butyrate was influenced by the combination of CH with oil (P < 0.01), and it decreased in MSD with RPCH (P < 0.01).

The diets affected all rumen ciliate protozoa numbers (P < 0.05 and P < 0.001), with the exception of *Enoploplastron triloricatum* (Table 3). The D × CH, D × O, and D × OCH interactions affected the total protozoa number as well as the count of the majority of the individual rumen ciliate genera. The rumen ciliate *Dasytricha ruminantium* was influenced by oil (P < 0.05) and OCH (P < 0.01), and it decreased in MSD with RPCH (P < 0.05).

The diet, oil, and oil with chitosan affected the outputs of all fatty acids (P < 0.001; Table 4). The D × O and D × OCH affected the outputs of all fatty acids (P < 0.05, P < 0.01, and P < 0.001) except for myristic acid ($C_{14:0}$), palmitic acid ($C_{16:0}$), and margaric acid ($C_{17:0}$) outputs. Compared with the control, the outputs of $C_{14:0}$, $C_{16:0}$, and $C_{17:0}$ of all diets with additives were lower. The output of stearic acid ($C_{18:0}$) was lower in HFD and MSD with RP (P < 0.05) and LFD with SF (P < 0.01) when compared with the control.

4. Discussion

There is currently a worldwide trend of producing ecologically clean foods by adding natural supplements to animal nutrition that have a positive influence on the human organism. Our results show that chitosan had a tendency to decrease IVDMD; however, this was significantly decreased only in the high forage diet. A reduction of in vitro digestibility for maize silage diet and a different forage-concentrate diet with chitosan (325, 750, and 1500 mg/L of culture fluid) has also been observed previously (3-5). A slight decrease in the digestibility in sheep given chitosan (136 mg/kg of BW) daily via rumen fistula has also been reported (6). In addition, the lipid supplementation (up to 60 g/kg DM) of diets mostly reduced rumen degradation of fiber and organic matter in vitro and in vivo (15,16). In our experiment, the interactions in IVDMD were detected, and then the P values were hard to interpret. Because IVDMD is associated with microbial fermentation activity, chitosan and oil additives also influenced the total gas production, with a slight effect on methane production. In addition, the molar proportion of n-butyrate was decreased in the maize silage diet with rapeseed oil combined with chitosan, probably because of the induced changes in size and activities of the microbial populations (i.e. Dasytricha ruminantium) in the batch cultures. However, chitosan has a predominantly adverse effect on the rumen cellulolytic

WENCELOVÁ et al. / Turk J Vet Anim Sci

	. 1 1	IVDMD	Total gas	Methane	SCFA	Molar pro	Molar proportion of SCFA			
Diet	Additive	(g/kg DM)	(mL/g DM)	(mmoL/g DM)	(mmol/L)	Acetate	Propionate	<i>n</i> -Butyrate		
	Control	631	230	3.98	60.0	70.4	17.4	7.42		
	Chitosan	574 _в	205	3.89	75.9	Molar propution of SCFA Acetate Propionate n-Buty 70.4 17.4 7.42 70.0 18.1 7.18 69.0 18.4 7.48 70.0 18.5 7.11 69.0 18.5 7.43 70.0 18.5 7.43 69.5 18.5 7.43 69.5 18.2 6.99 68.3 18.2 8.27 68.7 18.3 8.15 67.7 18.3 8.20 68.5 18.3 8.29 68.5 18.3 8.29 68.5 18.3 8.29 68.5 18.3 8.29 66.4 19.0 10.9 67.0 18.8 10.2 67.0 18.7 10.0 66.7 19.9 9.95 66.5 19.1 10.4 66.3 20.7 9.46b 10.4 66.3 20.7 9.45 <	7.18			
	SF	583	200ª	3.01	DM Actate Propionate n-Butyrate 60.0 70.4 17.4 7.42 75.9 70.0 18.1 7.18 75.0 69.0 18.4 7.42 67.7 70.0 18.4 7.43 69.8 69.5 18.5 7.11 68.8 70.3 18.2 6.99 71.5 68.3 18.2 6.99 66.3 68.7 18.3 8.15 68.1 67.7 18.3 8.48 68.4 67.8 19.1 8.20 70.5 68.5 18.3 8.29 69.4 68.3 19.0 8.08 87.9 66.4 19.0 10.9 85.0 67.0 18.8 10.2 104 67.0 18.7 10.0 62.0 66.7 19.9 9.5 103 66.5 19.1 0.41 *** Ns Ns **	7.48				
HFD	RP	589	210	3.91	67.7	70.0	Propionate n-Butyrate 17.4 7.42 18.1 7.18 18.1 7.48 18.4 7.48 18.5 7.11 18.5 7.43 18.5 7.43 18.5 7.43 18.2 6.99 18.2 8.27 18.3 8.15 18.3 8.48 19.1 8.20 18.3 8.29 19.0 8.08 19.0 10.9 18.8 10.2 18.7 10.0 19.9 9.95 19.1 10.4 20.7 9.46b 1.13 0.441 Ns Ns Ns Ns			
	SFCH	597	195a	2.68	69.8	69.5	18.5	7.43		
	RPCH	547	200a	4.18	68.8	70.3	18.2	6.99		
	Control	761	240	3.07	71.5	68.3	18.2	8.27		
	Chitosan	717	220	2.41	66.3	68.7	18.3	8.15		
	SF	734	200 ^b	3.10	68.1	67.7	18.3	8.48		
LFD	RP	625	220	3.32	68.4	67.8	19.1	8.20		
	SFCH	634	190c	2.57	70.5	68.5	18.3	8.29		
Diet Diet Diet HFD LFD MSD SEM Diets (D) Chitosan (CH Oils (O) OCH D × CH D × O	RPCH	615	205a	3.98	69.4	68.3	19.0	8.08		
	Control	539	240	8.13	87.9	66.4	19.0	10.9		
Diet Diet HFD LFD MSD SEM Diets (D) Chitosan (CH Oils (O) OCH D × CH D × O D × OCH	Chitosan	532	210 _A	4.26	85.0	67.0	18.8	10.2		
	SF	491	210 ^a	6.86	104	immol/L) Acetate Propionate <i>n</i> -Butyrate 50.0 70.4 17.4 7.42 75.9 70.0 18.1 7.18 75.0 69.0 18.4 7.48 57.7 70.0 18.5 7.11 59.8 69.5 18.5 7.43 58.8 70.3 18.2 6.99 71.5 68.3 18.2 8.27 56.3 68.7 18.3 8.15 58.1 67.7 18.3 8.48 58.4 67.8 19.1 8.20 70.5 68.5 18.3 8.29 59.4 68.3 19.0 8.08 87.9 66.4 19.0 10.9 85.0 67.0 18.8 10.2 104 67.0 18.7 10.0 52.0 66.7 19.9 9.95 103 66.5 19.1 10.4 62.7 66.3 20.7 9.46b	10.0			
MSD	RP	555	220	6.79	62.0	66.7	19.9	9.95		
	SFCH	471	205a	6.11	103	66.5	19.1	10.4		
	RPCH	536	210a	7.55	62.7	66.3	20.7	9.46b		
SEM		12.6	8.1	0.689	0.64	2.23	1.13	0.441		
Diets (D)		***	***	***	***	Ns	Ns	***		
Chitosan (CI	H)	**	***	**	**	Ns	Ns	Ns		
Oils (O)		***	***	Ns	**	Ns	Ns	Ns		
OCH		***	***	*	***	Ns	Ns	**		
D × CH		Ns	Ns	***	**	Ns	Ns	Ns		
D×O		***	Ns	Ns	***	Ns	Ns	Ns		
D × OCH		***	Ns	Ns	***	Ns	Ns	Ns		

Table 2. Effect of diets incubated with chitosan, sunflower oil, rapeseed oil, and their combinations on rumen fermentation patterns.

HFD: high forage diet; LFD: low forage diet; MSD: maize silage diet; SF: sunflower oil; RP: rapeseed oil; SFCH: sunflower oil with chitosan; RPCH: rapeseed oil with chitosan; OCH: oil + chitosan; IVDMD: in vitro dry matter digestibility; SCFA: short-chain fatty acids; ^{a,b}: Significant differences (P < 0.05) between control vs. oil; _{A,B}: significant differences (P < 0.05) between control vs. chitosan; a,b,c: significant differences (P < 0.05) between control vs. oil; with chitosan. *P < 0.05; **P < 0.01; ***P < 0.001; Ns: not significant.

WENCELOVÁ et al. / Turk J Vet Anim Sci

Table 3. Effect of diets incubated with chitosan,	sunflower oil, rapeseed oil, and their	combinations on ciliate protozoa number (n/mL).

Diet	Additive	Total protozoa	<i>Entodinium</i> spp.	Dasytricha ruminantium	<i>Isotricha</i> spp.	Enoploplastron triloricatum	Polyplastron multivesiculatum	Ophryoscolex c. tricoronatus	
	Control	75,400	72,000	2800	200	115	120	115	
	Chitosan	74,300	71,200	2500	220	130	145	75	
	SF	71,500	68,400	2300	200	110	150	90	
	RP	63,000	59,800	2600	240	130	100	80	
HFD	SFCH	57,300	54,400	2400	165	135	140	20	
	RPCH	63,000	59,600	2600	210	120	150	35	
	Control	81,700	78,000	2900	350	170	150	100	
	Chitosan	64,000	59,600	3100	300	120	145	110	
	SF	60,300	56,200	3330	330	130	150	110	
	RP	54,600	52,400	2053	58 40		30	10	
LFD	SFCH	70,500	66,800	3000	320	130	190	60	
	RPCH	58,100	56,000	1900	80	50	35	10	
	Control	110,000	105,000	D0 2900 350 D0 3100 300 D0 3330 330 D0 2053 58 D0 3000 320 D0 1900 80 D00 2700 170 D00 1800 330 400 2000 320 D00 1100 170 D00 2100 390 D00 900a 75	170	130	375	200	
	Chitosan	92,000	88,200	1800	330	170	390	200	
	SF	108,000	104,400	2000	320 200		370	180	
MSD	RP	75,000	72,600	1100	170	35	80	30	
	SFCH	80,500	77,000	2100	390	180	400	240	
	RPCH	65,300	63,200	900a	75	30	45	35	
SEM		6500	6300	360	14	13	19	14	
Diets (D)		***	***	*	***	Ns	***	***	
Chitosan (O	CH)	***	***	Ns	***	Ns	Ns	Ns	
Oils (O)		***	***	*	***	***	***	***	
ОСН		***	***	**	***	*	***	***	
D × CH		***	***	Ns	***	Ns	***	Ns	
$D \times O$		***	***	Ns	***	***	***	**	
D × OCH		***	***	Ns	***	***	***	***	

HFD: high forage diet; LFD: low forage diet; MSD: maize silage diet; SF: sunflower oil; RP: rapeseed oil; SFCH: sunflower oil with chitosan; RPCH: rapeseed oil with chitosan; OCH: oil + chitosan; a: significant difference (P < 0.05) between control vs. rapeseed oil with chitosan. *P < 0.05; **P < 0.01; ***P < 0.001; Ns: not significant.

WENCELOVÁ et al. / Turk J Vet Anim Sci

Diet	Addition	Fatty ac	Fatty acids (g/kg of FA)											
Diet	Additive	C _{14:0}	C _{15:0}	C _{16:0}	C _{17:0}	C _{18:0}	C _{18:1n9}	TVA	C _{18:2n6}	CLA	C _{18:3n3}	SFA	MUFA	PUFA
	Control	43.4	46.2	366	31.1	375	13.1	13.9	7.48	0.0	6.29	924	41	35
	Chitosan	30.1	35.3	307	29.5	327	22.3	18.6	8.64	0.0	5.79	906	61	34
HFD	SF	21.3ª	21.7	199°	17.2	324	162	136	9.68	10.3	3.91	734	210	56
	RP	18.0c	19.3	199°	10.6 ^b	304 ^a	220	141	12.2	11.8	3.51	672	294	34
	SFCH	18.5c	18.3	182c	13.0a	319	193	155	12.4	13.2	2.95	698	265	37
	RPCH	19.0b	18.5	191c	10.3b	309	212	137	10.7	10.8	3.52	679	284	37
	Control	35.4	37.7	335	24.1	409	21.8	32.6	9.70	0.0	4.58	912	67	20
	Chitosan	31.8	32.2	296	20.5	358	43.1	37.7	9.17	0.0	5.13	927	51	22
	SF	21.8	21.7	214 ^b	13.6	328 ^b	167	130	12.9	19.3	3.54	883	86	31
LFD	RP	8.21°	8.46	133°	5.96 ^a	360	214	145	15.0	12.9	4.31	558	406	36
	SFCH	26.2	24.3	244a	14.4	343	150	111	8.37	13.7	5.15	800	178	22
	RPCH	9.38c	9.76	127c	6.84a	367	195	155	15.3	14.2	5.95	660	299	41
	Control	26.0	25.2	258	11.6	426	36.0	42.5	34.0	0.0	8.46	858	110	42
	Chitosan	27.2	24.9	240	12.5	401	39.5	51.3	31.2	0.0	9.61	851	113	36
	SF	19.1	18.8	201	10.5	393	104	57.6	120	6.03	8.85	681	187	132
MSD	RP	10.2ª	25.0	136 ^b	6.15	360 ^a	248	52.3	79.5	6.53	23.3	562	326	112
110D	SFCH	16.5	16.9	191	12.0	378	106	58.3	121	12.0	10.5	649	206	145
	RPCH	6.68a	19.6	100c	4.05	218	435	55.1	112	7.21	39.7	361	478	161
SEM		4.403	3.585	23.8	4.29	17.2	11.5	4.69	4.92	1.29	1.120	14.3	10.7	8.2
Diets (D)		***	***	***	***	***	***	***	***	***	***	***	***	***
Chitosan	(CH)	Ns	Ns	Ns	Ns	Ns	Ns	Ns	Ns	Ns	Ns	Ns	Ns	Ns
Oils (O)		***	***	***	***	***	***	***	***	***	***	***	***	***
ОСН		***	***	***	***	***	***	***	***	***	***	***	***	***
D × CH		Ns	Ns	Ns	Ns	Ns	Ns	Ns	Ns	Ns	Ns	Ns	Ns	Ns
D×O		Ns	**	Ns	Ns	Ns	***	***	***	***	***	***	***	***
D × OCH		Ns	**	Ns	Ns	***	***	***	***	*	***	***	***	***

Table 4. Effect of diets incubated with chitosan, sunflower oil, rapeseed oil, and their combinations on fatty acid profiles.

HFD: high forage diet; LFD: low forage diet; MSD: maize silage diet; SF: sunflower oil; RP: rapeseed oil; SFCH: sunflower oil with chitosan; RPCH: rapeseed oil with chitosan; OCH: oil + chitosan; FA: fatty acids; TVA: trans11C_{18:1}; CLA: cis9, trans11C_{18:2}; SFA: saturated FA; MUFA: monounsaturated FA; PUFA: polyunsaturated FA; ^{a,b}: Significant differences (P < 0.05) between control vs. oil; a,b,c: significant differences (P < 0.05) between control vs. oil; a,b,c: significant differences (P < 0.05) between control vs. oil with chitosan. *P < 0.05; **P < 0.01; **P < 0.001; Ns: not significant.

ciliate population, and it is possible that chitosan also modifies the microbial ecosystem of the rumen through cellulolytic bacteria in a high forage diet.

In our experiment, the diets high in starch (low forage diet and maize silage diet) affected the relative proportion of ciliate protozoa as well as the extent of fermentation in the batch culture. The growth efficiency of the majority of rumen ciliates depended on the amount of starch (concentrate) in the diets. However, rumen ciliate protozoa did not show a uniform response to the tested diets and additives. On the other hand, some in vivo and in vitro studies have shown that most species of ciliate protozoa are unable to grow with a diet rich in starch (17,18). In addition, rumen fibrolytic ciliates (e.g., Ophryoscolex, Eremoplastron, Diploplastron, Polyplastron, Eudiplodinium) prefer complex substrates with fiber and protein and a small proportion of starch (19,20). The combination of chitosan with rapeseed oil (RPCH) has a predominantly adverse effect on Dasytricha ruminantium in maize silage diet. Decreasing total number of protozoa and number of Entodinium spp. was evident especially in the low forage diet and maize silage diet with all additives. However, as interactions of diets and additives occurred in the count of the majority of rumen ciliate genera, we speculate that all additives used (chitosan, SF, RP, SFCH, and RPCH) had an antiprotozoan effect, although potentiated effects were observed only in the maize silage diet. It is known that plant oils rich in polyunsaturated FAs (PUFAs) alter the ruminal microbial population at a dose of less than 5% of dietary DM (21). The FA profile of protozoan cells also depends on the species of ciliates and presumably may be influenced by dietary FAs (22). However, more than 5% of dietary DM being of C₁₈ unsaturated FAs has a stronger antiprotozoan effect and can lead to the total elimination of rumen protozoa (23).

In our experiment, we also examined the effect of chitosan with sunflower oil and rapeseed oil on lipid metabolism. Chitosan has been shown to reduce biohydrogenation in vitro by increasing TVA and total

References

- Di Martino A, Sittinger M, Risbud MV. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005; 26: 5983–5990.
- Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo PE. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Ch 1990; 34: 2019–2023.
- Goiri I, Garcia-Rodriguez A, Oregui LM. Effect of chitosans on in vitro rumen digestion and fermentation of maize silage. Anim Feed Sci Technol 2009; 148: 276–287.

CLA proportions and by decreasing C_{18:0} regardless of the dietary FA source (7). In our experiment, the use of only chitosan had no effect on the FA profiles of rumen fluid. On the other hand, it is known that plant oils could positively affect TVA, and c9, t11-CLA flow from the rumen (24). We found an increase in TVA and c9, t11-CLA concentrations in all diets with oil additives. However, when the interactions were significant in lipid metabolism, we can speculate that differences may be caused by differences in microbial populations developed during fermentation in the batch cultures or by differences in the amount of concentrate in the diets. Recent studies have reported a relationship between the proportion of C_{18} FA isomers and the forage-to-concentrate ratio in diets (25,26). Increasing the amount of concentrate has been shown to increase c9, t11-CLA content in vitro and in vivo (27), but other authors found no changes in the proportion of c9, t11-CLA when concentrates were increased in diets (28, 29).

In conclusion, the supplementation of 3 different diets (i.e. diets containing high forage, low forage, and maize silage) with chitosan at a dose 100 mg/L of culture fluid for 24 h in vitro incubation has an effect on IVDMD, total gas, methane production, and the growth of some rumen ciliate genera. Chitosan did not affect the FA profiles, and it was not effective in increasing conjugated linoleic acid and trans-vaccenic acid concentrations in batch cultures. However, the combination of both additives (sunflower oil with chitosan, rapeseed oil with chitosan) had the opposite effect, suggesting that the effects of oils dominated the effects of chitosan. However, more studies are needed to determine the impact of chitosan as a component of ruminant diets.

Acknowledgments

This study was supported by funds from the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (VEGA 2/0001/11).

- Goiri I, Garcia-Rodriguez A, Oregui LM. Effect of chitosan on mixed ruminal microorganisms fermentation using the Rumen Simulation Technique (Rusitec). Anim Feed Sci Technol 2009; 152: 92–102.
- Goiri I, Oregui LM, Garcia-Rodriguez A. Dose-response effects of chitosans on in vitro rumen digestion and fermentation of mixtures differing in forage-to-concentrate ratios. Anim Feed Sci Technol 2009; 151: 215–227.
- Goiri I, Oregui LM, Garcia-Rodriguez A. Use of chitosans to modulate ruminal fermentation of a 50:50 forage-toconcentrate diet in sheep. J Anim Sci 2010; 88: 749–755.

- Goiri I, Indurain G, Insausti K, Sarries V, Garcia-Rodriguez A. Ruminal biohydrogenation of unsaturated fatty acids in vitro as affected by chitosan. Anim Feed Sci Technol 2010; 159: 35– 40.
- Devillard E, McIntosh FM, Newbold CJ, Wallace RJ. Rumen ciliate protozoa contain high concentrations of conjugated linoleic acid and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid. Br J Nutr 2006; 96: 697–704.
- Or-Rashid MM, Odongo NE, McBride BW. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids. J Anim Sci 2007; 85: 1228–1234.
- McDougall EI. Studies on ruminant saliva. I. The composition and output of sheep's saliva. Biochemical J 1948; 43: 99–109.
- Coleman GS. Rumen entodiniomorphid protozoa. Methods of cultivating parasites in Vitro. London, UK: Academic Press, 1978.
- Association of Official Analytical Chemists. Official Methods of Analysis. 15th ed. Arlington, VA, USA: The Association, 1990.
- 13. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 1991; 74: 3583–3597.
- 14. Cottyn BG, Boucque CV. Rapid method for the gas chromatographic determination of volatile fatty acids in rumen fluid. J Agric Food Chem 1968; 16: 105–107.
- Machmuller A, Ossowski DA, Wanner M, Kreuzer M. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim Feed Sci Technol 1998; 71: 117–130.
- Sutton JD, Knight R, McAllan AB, Smith RH. Digestion and synthesis in the rumen of sheep given diet supplemented with free and protected oils. Br J Nutr 1983; 49: 419–432.
- Eadie JM, Hobson PN, Mann SO. A note on some comparisons between the rumen content of barley-fed steers and that of young calves also fed on a high concentrate ration. Anim Prod 1967; 9: 247–250.
- Lyle RR, Johnson RR, Wilhite JV, Backus WR. Ruminal characteristics in steers as affected by adaptation from forage to all-concentrate diets. J Anim Sci 1981; 53: 1383–1390.
- Belzecki G, Michalowski T. The role of *Eudiplodinium maggii* in starch metabolism in the rumen. J Anim Feed Sci 2001; 10: 141–146.

- 20. Belzecki G, Miltko R, Michalowski T. Why does the establishment of the starch preferring *Entodinium caudatum* in the rumen decrease the numbers of the fibrolytic ciliate *Eudiplodinium maggii*? Folia Microbiol 2004; 49: 139–142.
- 21. Hristov N, Ivan M, McAllister TA. In vitro effects of individual fatty acids on protozoan numbers and on fermentation products in ruminal fluid from cattle fed a high-concentrate, barely-based diet. J Anim Sci 2004; 82: 2693–2704.
- 22. Cieślak A, Miltko R, Bełżecki G, Szumacher-Strabel M, Michałowski T. Rumen ciliates *Entodinium caudatum*, *Eudiplodinium maggii* and *Diploplastron affine*: a potential reservoir of unsaturated fatty acids for the host. Acta Protozool 2009; 48: 335–340.
- 23. Ivan M, Mir PS, Koenig KM, Rode LM, Neill L, Entz T, Mir Z. Effects of dietary sunflower seed oil on rumen protozoa population and tissue concentration of conjugated linoleic acid in sheep. Small Rumin Res 2001; 41: 215–227.
- Váradyová Z, Kišidayová S, Siroka P, Jalč D. Comparison of fatty acid composition of bacterial and protozoal fractions in rumen fluid of sheep fed diet supplemented with sunflower, rapeseed and linseed oils. Anim Feed Sci Technol 2008; 144: 44–54.
- Laverroux S, Glasser F, Gillet M, Joly C, Doreau M. Isomerization of vaccenic acid to cis and trans C_{18:1} isomers during biohydrogenation by rumen microbes. Lipids 2011; 46: 843–850.
- Gudla P, AbuGhazaleh AA, Ishlak A, Jones K. The effect of level of forage and oil supplement on biohydrogenation intermediates and bacteria in continuous cultures. Anim Feed Sci Technol 2012; 171: 108–116.
- Wang JH, Song MK, Son YS, Chang MB. Effect of concentrate level on the formation of conjugated linoleic acid and transoctadecenoic acid by ruminal bacteria with oilseeds in vitro. Asian-Aust J Anim Sci 2002; 15: 687–694.
- Lee MRF, Tweed JKS, Dewhurst RJ, Scollan ND. Effect of forage: concentrate ratio on ruminal metabolism and duodenal flow of fatty acids in beef steers. Anim Sci 2006; 82: 31–40.
- 29. Loor JJ, Ueda K, Ferlay A, Chilliard Y, Doreau M. Biohydrogenation, duodenal flow, and intestinal digestibility of trans fatty acids and conjugated linoleic acids in response to dietary forage: concentrate ratio and linseed oil in dairy cows. J Dairy Sci 2004; 87: 2472–2485.