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1. Importance of maternal signals for development of 
the bovine blastocyst
The zygote contains within its genome and epigenome the 
program to direct development through the embryonic, 
fetal, and postnatal periods. The execution of that program 
is dependent on the embryo’s nongenetic inheritance from 
the oocyte and sperm (1,2) as well as on the environment 
in which development proceeds. Variation in the maternal 
environment can affect the ability of the preimplantation 
embryo to establish pregnancy. In cattle, the focus of this 
review, competence of the preimplantation embryo for 
growth and survival can be affected by maternal parity 
(3), lactational status (4), and circulating concentrations 
of progesterone (5). Moreover, patterns of gene expression 
in the endometrium are associated with survival of an 
embryo transferred to the uterus in the next ovulatory 
cycle (6,7). 

Development of the bovine embryo to the blastocyst 
in the absence of maternal signals (i.e. through in vitro 
production procedures) results in embryos with aberrant 
gene expression (8,9), lipid content (10,11), DNA 
methylation (12), and, as shown in the Table, reduced 
competence to establish pregnancy after transfer into 
recipients (13–17). Additionally, an increased proportion 
of embryos produced in vitro have developmental 

abnormalities that lead to increased neonatal death losses 
(18–20). Some of the problems with the in vitro-produced 
embryo could result from selection of incompetent 
oocytes or inadequate oocyte maturation. However, 
the importance of the maternal environment during 
development is indicated by observations that transfer of 
in vitro-produced embryos to the oviduct after fertilization 
limits some of the abnormalities associated with in vitro 
production (9,21). 

One function of the reproductive tract is to secrete 
bioactive molecules that regulate the embryo, oviduct, 
or endometrium. Genes for 115 ligands expressed in 
the endometrium had the corresponding receptor gene 
expressed by the embryo (22). Regulatory molecules 
produced by the oviduct and endometrium, which include 
hormones, growth factors, and cytokines, are referred to 
as embryokines when they function to regulate embryonic 
growth and development (23). 

It is likely that some of the variation in the ability of 
the reproductive tract to support embryonic development 
represents variation in secretion of embryokines. Indeed, 
several genes that were overexpressed in the endometrium 
of cows that subsequently became pregnant after embryo 
transfer as compared to cows that did not establish 
pregnancy are potential embryokines. These include NGF, 
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VEGFB, and WNT11 (6) and CSF3, CXCL2, IL18, IL1B, 
and TNFSF13 (7). Among the genes upregulated in heifers 
of high fertility versus those of lower fertility were CXCL2, 
DKK1, and SFRP4 (24).  

Despite the importance of secretory molecules from 
the reproductive tract for control of early embryonic 
development, little is known about how specific 
embryokines regulate development of the embryo. The 
purpose of this review is to use the bovine as a model to 
understand the developmental processes controlled by 
embryokines that increase competence of the embryo 
to develop successfully to term. Focus will be on those 
embryokines in which effects on competence of embryos 
to survive after transfer to recipients have been examined: 
CSF2, IGF1, and DKK1. These molecules are not the 
only maternally derived regulatory molecules that can 
affect preimplantation development in the bovine. Other 
examples include activin (25,26), ILB1 (27), LIF (28), 
TGFB (28), FGF2 (28,29), and EGF (30). However, there 
is sufficient information about the role of CSF2, IGF1, 
and DKK1 on the bovine embryo to allow identification 
of functions regulated by these molecules that are likely 
important for developmental competence of the embryo. 
Among these functions is stimulation of proliferation, 
development of the inner cell mass (ICM), control of 
differentiation, and inhibition of apoptosis and stress-
mediated developmental arrest. 

2. Colony stimulating factor 2
Also called granulocyte-macrophage colony stimulating 
factor, CSF2 was discovered as a hematopoietic growth 
factor that controls development and function of 
granulocytes and macrophages (31). The cytokine is 
produced by several cell types, usually in response to an 
inflammatory signal, including fibroblasts, smooth muscle 
cells, endothelial cells, and monocytes (32). Moreover, 
CSF2 acts on a variety of cells to stimulate growth, block 

apoptosis, regulate chemotaxis, and induce release of 
bioactive molecules (33).

One of the sites of synthesis of CSF2 is the oviduct and 
endometrium, with greatest localization in the luminal 
epithelium (34–36). There is little cyclic variation in labeling 
intensity of CSF2 in the endometrium (34,35). Pregnancy 
may modify secretion of CSF2 because intensity of 
immunolabeling in the endometrial stroma was increased 
at day 7 in pregnant cows as compared to cyclic cows and 
labeling in the luminal epithelium of the endometrium was 
increased by intrauterine treatment with the embryonic 
secretory product IFNT (35). Immunoreactive protein and 
mRNA for CSF2 in the oviduct was reduced in obese cows 
(36), so environmental factors may also modify secretion 
of the cytokine. 

In the cow (37,38), as well as in the mouse (39) and 
human (40), treatment of embryos in vitro with CSF2 
increases the proportion of embryos that survive after 
transfer to recipient females. Results of experiments with 
cattle are summarized in Figure 1. CSF2 increased the 
percent of recipients diagnosed as pregnant at 30–35 days 
of gestation when the cytokine was administered from day 
5 to 7 of development (i.e. when the embryo was a morula 
or blastocyst), but not when treatment was from day 1 
to 7 after development (i.e. from the zygote to blastocyst 
stage). It is not really known whether the duration of 
CSF2 treatment is crucial for the change in embryonic 
function leading to increased pregnancy rate. That it may 
not be is indicated by the observation that CSF2 reduced 
fetal loss after initial pregnancy diagnosis when embryos 
were exposed to CSF2 from either day 5 to 7 (in 1 of 2 
experiments examined) or day 1 to 7. What is more likely 
is that the small sample size for each experiment created 
some variability in response.

There are several changes in the embryo caused by 
CSF2 that could potentially be responsible for the increased 
competence to establish pregnancy. Blastocysts produced 

Table. Differences in pregnancy rate after transfer of fresh embryos produced in vivo or in vitro. 

Pregnancy rate

Recipient type Day of pregnancy 
diagnosis 

Embryos
produced in vivo

Embryos
produced in vitro Reference

Heifers 53 79% (n = 19) 37% (n = 19)** 13

Beef and dairy heifers 50 55% (n = 199) 37% (n = 90)** 14

Bos taurus × B. indicus heifers 60 42% (n = 289) 34% (n = 910)* 15

Bos taurus × B. indicus nonlactating cows and heifers 30 59% (n = 90) 31% (n = 87)*** 16

Holstein cows, nonlactating 98 50% (n = 115) 43% (n = 145) 17

*: P < 0.05; **: P < 0.01; ***: P < 0.001.
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in the presence of CSF2 have increased numbers of cells in 
the ICM (37). Moreover, CSF2 improves survival of isolated 
ICM maintained in culture (41). These actions of CSF2 on 
the ICM could be important for embryonic survival since 
25% or more of in vitro-produced embryos at days 14–17 
of gestation are reported to be without the embryonic 
disk derived from the ICM (42–44). CSF2 also has actions 
on development of the trophoblast because embryos 
collected at day 15 have more extensive development of 
extraembryonic membranes when exposed to CSF2 from 
day 5 to 7 of development than when not treated with 
CSF2 (44). This action of CSF2 depends on sex, with CSF2 
increasing the length of male embryos and decreasing the 
length of female embryos (45). 

Some of the actions of CSF2 on the embryo could be 
mediated by inhibition of apoptosis. Culture with CSF2 
altered expression of several genes involved in apoptosis 
and reduced the increase in apoptosis caused by exposure 
of embryos to heat shock (46). Interestingly, CSF2 increases 
the percent of embryos becoming blastocysts only when 
development in control embryos is low (41). This result 
could indicate that CSF2 is reversing some aspects of 
cellular stress that lower development.

CSF2 also altered expression of 42 genes involved in 
the developmental process ontology of DAVID, including 
several genes whose change in expression was interpreted 
to indicate promotion of mesoderm formation and 
regulation of WNT signaling (46). 

Figure 1. Culture with CSF2, IGF1, and DKK1 improves survival of in vitro-produced embryos after transfer into recipients. Data 
represent pregnancy and calving rates. Black bars represent cows receiving control embryos while open bars represent cows receiving 
embryos treated with CSF2 from day 1 to 7 or 5 to 7 of development, DKK1 from day 5 to 7 of development, or IGF1 for the first 7 or 8 
days of development. Significant differences are indicated by asterisks (*: P < 0.05; **: P < 0.01). 
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The prototypical signal transduction system for 
CSF2 involves a low-affinity α subunit (CSF2RA) and a 
high-affinity β subunit (CSF2RB) (47). In the cow (41), 
as in other species (48–50), CSF2RA is expressed in the 
preimplantation embryo but expression of CSF2RB is 
undetectable or nearly so. It is likely, therefore, that CSF2 
signaling in the embryo involves an unknown pathway that 
is independent of CSF2RB.  In Xenopus oocytes, signaling 
through CSFRA is possible through a mechanism involving 
H2O2 generation and phosphatidylinositol 3-kinase (51).

3. Insulin-like growth factor 1
Several features of its biology make it difficult to 
understand the actions of IGF1 in the reproductive tract. 
The gene itself is subject to differential splicing and the 
protein can be modified after translation by proteolysis 
and glycosylation (52). IGF1 is part of a larger family of 
proteins including INS and IGF2, and each can interact 
with each other’s receptors (INSR, IGF1R, and IGF2R) 
(53). The effective concentration of IGF1 and IGF2 for 
receptor interactions depends upon concentrations of 6 
separate IGF-binding proteins, which prevent receptor 
binding while also increasing the half-life of IGF1(52).  

IGF1 is both a hormone, being released by the liver to 
mediate actions of somatotropin, and a locally produced 
growth factor. Accordingly, IGF1 concentrations in 
the lumen of the reproductive tract depend upon local 
synthesis and transudate from the blood. The extent to 
which changes in circulating concentrations of IGF1 
modify local amounts in oviductal or uterine fluids is not 
well established. There were nonsignificant increases in 
amounts of IGF1 in uterine lumen of cows in response to 
administration of bovine somatotropin (54,55).  

In the oviduct, local expression of IGF1 occurs in the 
endosalpinx of the ampulla and isthmus (56,57), particularly 
in the stroma underneath the luminal epithelium (56).  
Protein localization, in contrast, is greatest in the luminal 
epithelium (57,58). Expression peaks around estrus and 
declines thereafter (56,57). IGF1 is also expressed in the 
uterine endometrium (55,59,60). There is little variation in 
expression between days 5 and 16 after estrus in cyclic or 
pregnant cows (61). Endometrial expression of IGF1 was 
not regulated by somatotropin in 2 experiments (59,60). 
In a third study, expression of IGF1 as well as IGFBP2 and 
IGFBP3 was increased in endometrium of cyclic but not 
pregnant animals at day 17 after estrus (55).   

The bovine embryo expresses IGF1R during early 
development, with steady-state amounts of IGF1R mRNA 
decreasing from the zygote stage to day 3 after fertilization 
and then increasing steadily to the blastocyst stage (62). 
Two major signal transduction systems activated by 
binding of IGF1 to the IGF1R are the MAPK pathway, 

which leads to increases in proliferation, growth, and 
differentiation, and the PI3K/AKT pathway, which inhibits 
apoptosis (63). Actions of IGF1 on the preimplantation 
embryo indicate that both MAPK and PI3K/AKT pathways 
are activated (Figure 2). Culture with IGF1 increases the 
percent of embryos capable of developing to the blastocyst 
stage (28,30,64–69). This action of IGF1 probably 
involves increased proliferation because the cell number 
of day 6 morulae was increased by IGF1 (70). Effects on 
development could be blocked with antibody to IGF1R 
(64) and an inhibitor of MAPK activation (69,70). IGF1 
also blocks activation of apoptosis caused by exposure 
to heat shock (70,71) or the prooxidant menadione (72). 
Antiapoptotic actions of IGF1 in heat-shocked embryos 

Figure 2. Signal transduction pathways for actions of IGF1 on 
the preimplantation bovine embryo. Studies with chemical 
inhibitors indicate actions of IGF1 on cell number and 
competence to develop to the blastocyst stage are mediated by 
the MAPK pathway while inhibition of apoptosis is mediated by 
the PI3K/AKT pathway. 
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are mediated by PI3K/AKT since reduction in apoptosis 
was blocked by administration of inhibitors of PI3K or 
AKT (70,71). 

Another action of IGF1 is protection from cellular 
stress. In particular, IGF1 blocks antidevelopmental 
effects of heat shock (70,73,74) and menadione (72). There 
is also a report that IGF1 increased the proportion of 
frozen-thawed morulae that developed to the blastocyst 
stage (75). This effect could represent prevention of 
damage associated with cryopreservation or actions of 
IGF1 to increase development. IGF1 increases transcript 
abundance for several genes involved in cellular protection 
including those involved in regulation of apoptosis and 
protection against free radicals (74). The cytoprotective 
effect of IGF1 is probably not the sole result of inhibition 
of apoptosis. This is so because thermoprotective actions 
of IGF1 on development were not blocked with a PI3K 
inhibitor and could not be mimicked by addition of a 
caspase-3 inhibitor to block apoptosis (70). 

Early in development, the embryo is refractory to IGF1. 
Addition of IGF1 at day 4 after fertilization increased the 
percent of embryos becoming blastocysts but there was no 
effect of IGF1 from fertilization to day 4 (69). Similarly, 
IGF1 protected embryos from heat shock at day 5 of 
development but not 2-cell embryos (74). Developmental 
acquisition of responsiveness to IGF1 could reflect changes 
in IGF1R (62), the need for an active embryonic genome 
[which occurs at the 8–16 cell stage in the cow (76)], or 
regulation of key events associated with formation of the 
morula or blastocyst. 

Blastocysts formed in the presence of IGF1 have 
increased capacity to establish pregnancy when transferred 
to females (37,77,78). However, as shown in Figure 1, this 
property has only been shown to occur when recipients 
were exposed to heat stress. The reason for this interaction 
between IGF1 treatment and recipient type is not known. 
It is possible that IGF1-treated embryos are better able to 
resist maternal heat stress. However, the bovine embryo has 
gained resistance to maternal heat stress by the blastocyst 
stage of development (79) and there is little or no seasonal 
variation in pregnancy rate to embryo transfer (80). It is 
also not clear what properties of the blastocyst contribute 
to its increased propensity for posttransfer survival. In 
some experiments, blastocysts treated with IGF1 had 
increased cell number (67) and reduced proportion of 
cells that were apoptotic (66,67), whereas differences in 
cell number (66,81) and apoptosis (81) were not seen in 
other experiments.

Administration of somatotropin to embryo transfer 
recipients also increases embryonic survival (82). However, 
this action could represent direct actions of somatotropin 
on embryonic development (65) as well as increased IGF1 
in uterine lumen (54,55). 

4. Dickkopf 1 and regulation of WNT signaling
The WNT family of regulatory molecules plays important 
roles in development, oncogenesis, angiogenesis, 
inflammation, and wound repair (83–86). It is likely 
that WNTs also regulate the preimplantation embryo. 
Examination of a microarray database of mRNA from 
bovine morulae revealed expression of several WNT genes 
(WNT1, WNT2B, WNT3A, WNT4, WNT5A, WNT5B, 
WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, WNT10A, 
WNT10B, WNT11, and WNT16) and FZD receptor genes 
(FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, 
FZD9, and FZD10) (87). WNT signaling is complex and 
characterized by cross-talk between signaling pathways. 
The most well-characterized signaling cascade is the 
canonical or β-catenin-dependent pathway. Activation 
of this pathway requires binding of WNT to FZD and 
the coreceptor LRP5 or LRP6. A series of downstream 
events leads to inhibition of proteolysis of β-catenin and 
its translocation to the nucleus where it interacts with 
TCF and LEF family transcription factors to regulate gene 
expression. There are a variety of other signaling cascades 
activated by WNTs termed noncanonical pathways (83–
86). Some of these pathways use FZD as a receptor (planar 
cell polarity and Ca++-mediated signaling) while other 
pathways use other receptors such as receptor tyrosine 
kinase orphan receptor and receptor tyrosine kinase. 
Often, activations of canonical and noncanonical pathways 
exert opposite effects on cellular function (84,85). 

Overactivation of the canonical WNT signaling 
pathway can inhibit development of the bovine embryo. 
Culture of bovine embryos with an agonist of canonical 
WNT signaling called 2-amino-4-(3,4-(methylenedioxy) 
benzy lamino)-6-(3-methoxyphenyl)pyr imidine 
(AMBMP) reduced the percentage of embryos that 
developed to the blastocyst stage and reduced numbers of 
blastomeres in those blastocysts that did form (87). Cell 
number was reduced more for TE cells than for cells in 
the ICM. 

WNT signaling in the embryo may be regulated by 
a secretory inhibitor of canonical WNT signaling called 
DKK1. Expressed in the bovine endometrium (24,88), 
DKK1 can bind to LRP5/6 and, in the presence of the 
transmembrane protein KREMEN, cause its internalization 
and destruction and thereby prevent formation of the 
WNT-FZD-LRP5/6 complex (86,89,90). In addition, 
DKK1 can activate the planar cell polarity pathway (91–
93). Addition of DKK1 blocks the inhibitory actions 
of AMBMP on development (87). In addition, culture 
of embryos with DKK1 from day 5 to 8 of development 
increased the percent of cells in the blastocyst labeled 
as TE, decreased the percent of cells classified as ICM 
(CDX2-), and increased the percent of cells in the ICM 
classified as hypoblasts (cells positive for labeling with the 



594

HANSEN et al. / Turk J Vet Anim Sci

transcription factor GATA6 and negative for labeling with 
CDX2 and NANOG) (38). These actions of DKK1 are in 
contrast to the inhibition of TE cells caused by activation 
of WNT signaling (87).

Based on these experiments, it has been proposed 
(38) that DKK1 facilitates cell fate decisions in the early 
embryo, resulting in blastocysts with a higher proportion 
of embryonic cells committed to the TE fate and of ICM 
cells differentiating into the hypoblast lineage. These effects 
of DKK1 likely result from a shift between pluripotency 
and differentiation, and are not reflective of an increased 
total cell number because DKK1 does not promote cell 
proliferation in the early embryo (38).     

Like for CSF2 and IGF1, culture of embryos with DKK1 
from day 5 to 7 after fertilization improves competence 
of embryos to establish pregnancy (38). Pregnancy rates 
at day 32 after ovulation were higher for cows receiving 
embryos treated with DKK1 than for cows receiving 
control embryos (Figure 1). The greater pregnancy rate 
at day 32 for cows receiving embryos treated with DKK1 
or CSF2 persisted but differences at calving became 
nonsignificant (Figure 1).

It is possible that physiological variation in DKK1 
expression in the endometrium contributes to variation in 
fertility between cows. Expression of DKK1 is reduced in 
the endometrium of lactating cows (88) and was lower in 
inherently subfertile heifers than in more fertile ones (24).

5. Conclusions
Many events must be properly executed for a cleavage-
stage embryo to develop to a blastocyst-stage embryo 
capable of establishing pregnancy. Among these is 
proliferation of blastomeres, differentiation of TE cells 
from the outer cells of the morula, formation of the ICM, 
and differentiation of specific cells in the ICM to hypoblast 
with retention of pluripotency of the remaining cells of 
the ICM (now the epiblast). Moreover, the embryo must 
execute its developmental program while being protected 
from adverse stimuli in its environment that could cause 
apoptosis or other cellular damage inducing developmental 
arrest. These events are regulated by the embryokines that 
form the focus of this review (Figure 3). In particular, 
growth of the embryo is enhanced by IGF1, regulation of 
ICM cell number and capacity for survival is enhanced by 

Figure 3. Events in the formation and development of the bovine blastocyst regulated by select embryokines. Development to the blastocyst 
stage is increased by IGF1, at least in part because it increases cell proliferation. CSF2 affects development of the inner cell mass (ICM) so as 
to increase its cell number and the ability of isolated ICM to survive in culture. In contrast, DKK1 promotes cell differentiation by promoting 
development of the trophectoderm (TE) and hypoblast. Both CSF2 and IGF1 protect embryos from stimuli that could otherwise lead to 
developmental arrest. Both block induction of apoptosis and IGF1 can also reduce apoptosis-independent cellular damage. 
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CSF2, and differentiation of TE and hypoblast is facilitated 
by DKK1. Moreover, both CSF2 and IGF1 inhibit induction 
of apoptosis by proapoptotic stimuli. IGF1 can also reduce 
apoptosis-independent damage to the embryo, at least that 
caused by heat shock. 

It remains to be determined whether actions of these 
embryokines are indispensable for optimum development 

or whether other secretory products of the reproductive 
tract exert redundant actions. It will also be instructive to 
determine whether variation between females in secretion 
of CSF2, IGF1, or DKK1 is an important determinant of 
fertility and whether manipulation of expression of the 
genes for these embryokines can improve reproductive 
function. 
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