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1. Introduction
The main agricultural species of commercial importance 
suffer from problems related to egg quality and early 
embryonic development. In the dairy cattle industry, the 
calving rate is less than 50% among artificially inseminated 
cows (1). In the in vitro production of bovine embryos, 
the blastocyst rate is around 30%–50%, and after embryo 
transfer, the abortion rate is 8% to 13%, with the greatest 
embryonic loss occurring around day 8 (2–4). The newly 
fertilized embryos undergo dramatic morphological and 
genetic changes, mainly characterized as maternal to 
zygotic transition (MZT) (5). The rapid cell division and 
development of early embryos before MZT is driven by the 
maternal transcripts/factors accumulated inside the oocyte. 
During early development, when transcriptional activity 
is repressed, these maternal transcripts are translated into 
functional proteins or stored for later recruitment, leading 
to embryonic genome activation (6). There is an imperative 
need to understand the functions of oocyte-derived 
factors and how their translation and degradation are 
controlled during early embryogenesis. A growing body of 
evidence indicates that microRNAs (miRNAs) are major 
mediators involved in translational control during oocyte 
development and early embryogenesis (7). The miRNAs 
are a group of small noncoding RNAs of 18–24 nucleotides 
that were first discovered in Caenorhabditis elegans (8). 
They can regulate gene expression by recognizing specific 
sites on the mRNA or promoter region of target genes 
(9,10). Recent studies have implicated the regulatory 
functions of miRNAs in ovarian folliculogenesis and early 

embryonic development. In this review, we will summarize 
the current knowledge of miRNAs involved in ovarian and 
early embryonic development in cattle, with an emphasis 
on the role of miRNAs in the regulation of oocyte-specific 
maternal effect genes.

2. Biosynthesis of miRNAs
The miRNAs are encoded by the genome and are produced 
from the intergenic region, introns or exons of protein-
coding genes (11). Most miRNAs have their own enhancer 
and promoters, indicating that their expression could be 
controlled by transcriptional factors, DNA methylation, or 
other mechanisms found in protein-coding genes (12–14). 
The processing pathways of miRNAs are conserved in 
different species, and miRNAs are transcribed mostly by 
RNA polymerase II or in some cases RNA polymerase III 
(15,16). At the beginning of transcription, primary miRNA 
(pri-miRNA) is transcribed by corresponding RNA 
polymerase (II or III), which folds into the characteristic 
hair-pin structure through the complementary regions on 
the pri-miRNA sequence. While still inside the nucleus, 
the pri-miRNA is processed by the protein complex RNase 
III, Dorsha and DiGeorge syndrome critical region 8 
(DGCR8), to form precursor miRNAs (pre-miRNAs) of 
~70 nucleotides. With the help of exportin 5, a RanGTP-
dependent nuclear transporter, pre-miRNA is translocated 
from the nucleus to the cytoplasm (17). Once in the 
cytoplasm, the protein complex of RNase III, Dicer, and 
TEBP, recognizes the pre-miRNA and cleaves the loop, 
giving rise to a miRNA duplex consisting of a guide strand 
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and a passenger strand (18). The guide strand is loaded 
in the RNA-induced silencing complex and achieves its 
function through complementary binding to the target 
sequences (19). Production of some of the miRNAs 
originating from short intronic regions follows a different 
pathway, which is Dorsha/DGCR8-independent (20,21). 

3. miRNAs in bovine fetal and adult ovaries 
The ovary is composed of several cell types, including the 
oocyte and a number of somatic cells such as granulosal, 
thecal, luteal, and cumulus cells. Following the signals 
from the hypothalamus–pituitary–gonad axis, these cells 
coordinately respond to endocrine and paracrine factors, 
which eventually work back on the cells and regulate the 
expression and dynamics of gene networks in order to 
achieve the ovarian cycle. The development of germ cells 
is driven by the molecular and cellular changes inside 
the fetal ovary, which is a prerequisite to the production 
of mature oocytes capable of fertilization. To identify 
and study the involvement of miRNAs in germ cell and 
ovarian development, bovine fetal and adult ovary miRNA 
libraries were constructed, and over 100 miRNAs were 
found (22–24). In the bovine fetal ovary, miR-99a and 
miR-125b are the most abundant miRNAs, while in the 
adult ovary, the let-7 family miRNAs have the highest 
expression, which is considered to be required for timing 
of cell fate determination. The relative abundance of 
the miRNAs in fetal and adult ovaries indicates their 
cellular housekeeping roles during ovarian development. 
Interestingly, miR-10b was found in both fetal and adult 
ovarian samples and showed an ovary-specific expression 
pattern. The expression profile of miR-10b during early 
embryonic development indicates that it might be 
maternally inherited and plays a role in the maternal to 
zygotic gene activation (22).

4. miRNAs in bovine follicles
After puberty, follicles start to grow on a cyclic basis, 
facing 2 possible fates: atresia or full maturation resulting 
in ovulation of the oocyte. Ovulation occurs only in 
dominant follicles in each estrous cycle, and most 
oocytes inside the subordinate follicles are lost through 
atresia. The follicular selection mechanism is highly 
dependent upon the functions of granulosal cells. During 
oocyte development, granulosal cells play important 
roles in support of oocyte development and prepare the 
dominant follicle to respond to the LH surge, which 
triggers massive gene expression change and leads to 
ovulation. The miRNAs, as one of the molecular cues, 
play a role in regulation of molecular mechanisms in 
granulosa cells associated with ovulation and follicular 
atresia. During the first wave of folliculogenesis (day 3 
and day 7), 9 miRNAs (miR-21-3p, miR-221, miR-708, 

miR-214, miR-335, miR-155, miR-199a-5p, miR-21-5p, 
and miR-222) were found to be differentially expressed 
between granulosal cells from dominant follicles and 
subordinate follicles of Simmental heifers (25). Gene 
oncology analysis revealed that the differentially expressed 
miRNAs might be involved in regulation of programmed 
cell death, cell projection morphogenesis, regulation of 
cell proliferation, and biosynthesis of macromolecules 
(25). During the last follicular wave after the dominant 
preovulatory follicle is selected (day 19), 65 miRNAs were 
differentially expressed in granulosal cells from dominant 
versus subordinate follicles. The miRNAs involved in cell 
death were upregulated, while those involved in inhibition 
of apoptosis were downregulated. Potential targets of 
differentially expressed miRNAs were found to be related 
to cell proliferation and apoptosis mechanisms such as Wnt 
signaling, MAPK signaling, and TGF-β signaling pathways 
(26). By comparing miRNA expression profiles between 
small (4–8 mm) and large (12–17 mm) bovine follicles, 
several miRNAs including miR-144, miR-202, miR-451, 
miR-652, and miR-873 were identified to be upregulated 
in large healthy follicles. Targets of these miRNAs were 
mapped to signaling pathways involved in follicular cell 
proliferation, steroidogenesis, prevention of premature 
luteinization, and oocyte maturation (27). These studies 
indicated that the stage-specific miRNA profiles in bovine 
granulosal cells are highly related to follicular selection 
and development.

Recent studies have implicated the role of extracellular 
miRNAs in the regulation of bidirectional communication 
between the oocyte and somatic cells (28,29). Numerous 
studies in different species have demonstrated that 
microvesicles and exosomes released from many cell types 
serve as endocrine and/or paracrine regulatory factors 
that influence recipient cell phenotypes (30,31). In cattle, 
exosomal and nonexosomal fractions of extracellular 
miRNAs in follicular fluid were related to bovine oocyte 
developmental competence (28). Differentially expressed 
extracellular miRNAs were identified in both exosomal 
and nonexosomal fractions between follicles containing 
mature and immature oocytes. Uptake of exosomes into 
follicular cells was also observed in primary culture of 
bovine granulosal cells (28). These studies demonstrate a 
potential yet important role of extracellular miRNAs in 
follicular development and oocyte competence. 

5. miRNAs in the bovine cumulus–oocyte complex
Cumulus cells surround the oocyte to form the cumulus–
oocyte complex (COC). In response to the LH surge, 
cumulus cells expand and continue to enclose the oocyte 
even after fertilization until early embryo development. 
Oocyte secreted factors act on and direct the development 
and function of cumulus cells. In return, cumulus 
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cells contribute to oocyte maturation and subsequent 
developmental potential. To investigate the function of 
miRNAs in the course of bovine oocyte development, 
the expression of miRNAs in immature and mature 
COCs was characterized (32). In total, 59 miRNAs were 
differentially expressed between immature and mature 
COCs, of which 31 and 28 miRNAs showed preferential 
expression in immature and mature COCs, respectively. 
Additional studies showed that the expressions of miR-
205, miR-150, miR-122, miR-96, miR-146a, and miR-
146b-5p were decreased dramatically in COCs at different 
maturation times from 0 h to 22 h (33) and miR-130b was 
upregulated in immature compared to mature COCs (34). 
Microinjection knockdown experiments showed that the 
majority of oocytes injected with anti-miR-130b remained 
arrested at the telophase I stage and the number of oocytes 
reaching metaphase II was reduced significantly compared 
to the control group (34). The general population of 
miRNAs in bovine COCs has been characterized, and the 
let-7 miRNA family shows the highest expression in bovine 
COCs (35). Interestingly, miR-106a expression was found 
to be significantly higher in oocytes compared to COCs 
and granulosal cells (35). Target prediction indicated that 
WEE1A protein kinase is the potential target of miR-
106a, and a negatively correlated expression pattern was 
observed between miR-106a and the predicted target. 
It was speculated that when the protein kinase activity 
of WEE1A is suppressed, proper acquisition of meiotic 
competence in the oocytes is ensured as WEE1A inhibits 
the maturation-promoting factor.

6. miRNAs in the bovine corpus luteum
The most important functions of the ovary are first 
to produce viable oocytes resulting in successful 
fertilization and healthy embryos, and second to form a 
functional corpus luteum (CL), which is critical in the 
maintenance of pregnancy (36). After ovulation, the CL, 
which is transformed from the ovulated follicle, requires 
intense angiogenesis and produces significant amounts 
of progesterone, essential for the maintenance of early 
pregnancy. The formation of the CL also is regulated by 
miRNAs. In mouse, absence of miR-17-5p and let-7b 
impaired CL formation (37). When bovine granulosal 
and thecal cells were cultured in luteinization-promoting 
media, the expressions of miR-199a-3p, miR-125b, miR-
145, and miR-31 decreased significantly, while miR-21, 
miR-142, and miR-503 showed increased expression 
during the follicular–luteal transition. Target prediction of 
downregulated miRNAs revealed multiple genes involved 
in differentiation of granulosal cells, such as MYC, 
CDKN1A, and LIF, which are known to be increased 
in response to human chorionic gonadotropin during 
ovulation. An upregulated miRNA during the follicular–

luteal transition, miR-21, was found to be important in 
mediating the antiapoptotic effects of the ovulatory LH 
surge on luteinization of granulosal cells (38). In cattle, 
comparing the miRNA expression patterns between 
nonregressed and regressed CL revealed 13 differentially 
expressed miRNAs. (39). One of them, miR-378, which 
is known to be associated with apoptosis, was found to 
be dramatically upregulated in nonregressed CL. The 
interferon gamma receptor 1 (IFNGR1) gene, which 
potentially plays a role in apoptosis of the luteal cell, 
was predicted to be the target of miR-378. Western blot 
analysis showed that miR-378 can repress the expression 
of IFNGR1 protein but not IFNGR1 mRNA, supporting a 
role of this miRNA in apoptosis of bovine CL (39).

7. miRNAs in bovine early embryonic development
In conditional DGCR8 knockout mouse, the miRNA 
biogenesis pathway was specifically blocked; however, 
normal blastocyst development was not affected by the 
deficiency of miRNAs (40). Moreover, 3’ untranslated 
regions (UTRs) of mRNAs, which are upregulated in 
Dicer1 knockout oocytes, were not enriched in the 
DGCR8 mouse, indicating that the absence of miRNAs 
does not impact the turnover of mRNAs in early embryos 
(41). Results of these 2 studies using knockout mouse 
models downplayed the importance of miRNAs during 
early embryonic development. However, these studies 
focused only on 3’ UTRs targeting miRNAs generated 
by canonical Dicer- and DGCR8-dependent pathways, 
while other miRNAs targeting the open reading frame 
(ORF) of mRNAs and/or generated by a noncanonical 
DGCR8-independent pathway were not investigated. 
miRNAs such as miRNA-430 in zebrafish, miRNA-427 
in Xenopus, and miRNA-21 in rainbow trout have been 
shown to be present in early embryos prior to embryonic 
genome activation, and these miRNAs are responsible for 
degradation of maternal transcripts (42–45). In bovine 
early embryos, miR-21 and miR-130a showed significant 
increases during the 1–8 cell stage (46). Microinjection of 
bovine zygotes with anti-miR-130b resulted in significantly 
reduced rates of morulae and blastocysts (34). These 
studies provided significant evidence supporting a role of 
miR-130b during bovine early embryonic development. 
Furthermore, miRNA and mRNA networks have been 
discovered in bovine blastocysts. Comparison of miRNA 
expression profiles between unhatched and hatched 
bovine blastocysts revealed 8 upregulated (miR-127, miR-
130a, miR-196a, miR-155, miR-203, miR-29c, miR-28, 
and miR-376a) and 4 downregulated (miR-135a, miR-218, 
miR-449b, and miR-335) miRNAs in hatched blastocysts. 
The direct interactions of 3 miRNAs with developmentally 
important factors (miR-218 and CDH2, miR-218 and 
NANOG, and miR-449b and NOTCH1) were confirmed 
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by multiple biochemical experiments (47). These results 
indicate that miRNAs are very important during bovine 
early embryonic development, and the proposed function 
of miRNAs is to meet the needs for regulation of the 
maternal mRNAs, which have to be degraded.

8. Bovine oocyte-specific genes and their regulation by 
miRNAs
The finely orchestrated development and maturation of 
the oocyte has been the focus of many studies in which 
essential oocyte-specific genes have been identified (48,49). 
A number of such genes have been proven to play essential 
roles in mammalian folliculogenesis and early embryonic 
development (50). These genes code for a compilation of 
factors involved in chromatin remodeling, self-renewal 
proliferation, transcription initiation, and nuclear 
transportation. Aberrant expression of these essential 
genes leads to abnormalities in multiple developmental 
stages, from failure of resumption of oocyte meiosis to 
disruption of early embryonic development (51–54). 
Therefore, acute control of the expression of these factors is 
critical for normal follicular and embryonic development. 
Recent studies in cattle have demonstrated an important 
role of specific miRNAs in the regulation of these oocyte-
specific factors during MZT.
8.1. Nucleoplasmin 2 (NPM2) 
NPM2 is a nuclear chaperone involved in decondensation 
of sperm chromatin in Xenopus oocytes (55). Knockout of 
NPM2 in mouse led to impaired development in the 2-cell 
stage and reduced cleavage rate. NPM2-null embryos 
showed high levels of chromatin abnormalities including 
loss of heterochromatin and increased acetylated H3 
around the nuclei (56). Supplementation of NPM proteins 
to bovine oocytes after somatic cell nuclear transfer 
resulted in normal embryos with higher pregnancy rate 
(57). These results indicate that NPM2 is essential for 
chromatin reprogramming and normal development of 
early embryos. In cattle, NPM2 mRNA and protein are 
most abundant in GV and MII oocytes, but both mRNA 
and protein decrease sharply in early embryos after 
embryonic genome activation (58). A specific miRNA, 
miRNA-181a, was predicted to target bovine NPM2 
mRNA. Expression of miR-181a was increased in 4–16 
cell stage embryos, which is coincident with the time of 
embryonic genome activation in cattle when expression 
of NPM2 decreases. Cotransfection experiments revealed 
that the expression of bovine NPM2 protein was lower in 
HeLa cells expressing miR-181a compared to the negative 
control, indicating a role of miR-181a in translational 
silencing of NPM2 in bovine embryos (58). miR-181a is 
also known to be involved in granulosal cell proliferation 
and embryonic stem cell differentiation (59). 

8.2. New born ovary homeobox encoding gene (NOBOX) 
NOBOX is one of the earliest homeobox genes preferentially 
expressed in germ cells and is present throughout all stages of 
folliculogenesis in mice (51,60). NOBOX deficiency in female 
ovary allowed normal development of primordial follicles; 
however, further development was arrested at the transition 
from primordial to primary follicle. NOBOX depletion also 
reduced expression of a significant number of very important 
oocyte-specific genes, some of which have been shown to be 
essential in oogenesis and early embryogenesis. Therefore, 
NOBOX is a master regulator in follicular development (51). 
In cattle, NOBOX has been characterized and shown to be 
important even after fertilization during early embryonic 
development (22). miR-196a recognizes and binds to the 3’ 
UTR of bovine NOBOX mRNA. Coexpression experiments 
in cultured HeLa cells showed reduced expression of NOBOX 
protein in cells expressing miR-196a compared to control 
cells without miRNA-196a. Specific binding of miR-196a 
to NOBOX mRNA was confirmed by luciferase assays with 
constructs containing mutations on the predicted binding 
site. Furthermore, ectopic expression of miRNA-196a mimic 
in bovine early embryos reduced NOBOX protein expression. 
These data indicate that miR-196a mediates the degradation 
of the untranslated maternal NOBOX mRNA, which is very 
critical for early embryonic development. 
8.3. Factor in germline alpha (FIGLA) 
FIGLA is a germ cell-specific transcription factor, which 
controls expression of oocyte-specific zona pellucida (ZP) 
genes. Knockout of FIGLA in female mice led to sterility due 
to impaired meiosis and germ cell apoptosis (52). In cattle, 
FIGLA expression is restricted to gonadal tissues (61). Bovine 
FIGLA is expressed abundantly in early embryos up to the 
8-cell stage. After MZT, its expression drops to undetectable 
levels in morula and blastocyst stage embryos (61). A miR-
212 binding site was identified in the 3’ UTR of bovine 
FIGLA mRNA, and the seed region appears conserved 
across several mammalian species. Real-time PCR analysis 
showed similar expression profiles of miR-212 and FIGLA 
mRNA during early development, both dropping after 
embryonic genome activation. Luciferase reporter assays 
in HeLa cells showed specific interactions between miR-
212 and the predicted binding site in the FIGLA 3’ UTR. 
Microinjection of miR-212 mimic into bovine embryos 
revealed that miRNA-212 mimic could inhibit FIGLA 
protein expression (61). These studies indicated that FIGLA 
is a critical factor for follicular and embryonic development 
and miR-212 is a potential posttranscriptional regulator of 
FIGLA during MZT in cattle. 
8.4. Karyopherin alpha 7 (KPNA7) 
KPNA7 is a newly identified member of the KPNA 
protein family, which is the major player in translocation 
of macromolecules through an active energy-dependent 
nuclear import system (62,63). KPNA7 is specifically 
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expressed in oocytes of several mammalian species (64–
66). Knockdown of KPNA7 in early embryos led to arrested 
embryonic development in cattle and swine (64,66). Both 
KPNA7 mRNA and protein are abundant in early embryos 
but almost depleted in embryos after MZT (64,66). To 
determine if KPNA7 is regulated by miRNA during MZT, 
a computational prediction was performed to identify 
miRNA binding sites on the bovine KPNA7 mRNA. 
Interestingly, 4 binding sites for miR-1296 on the ORF of 
the gene were identified. Expression of miR-1296 tends to 
increase in 4-cell and 8-cell stage embryos and declines 
in morula and blastocyst stage embryos. Cotransfection 
experiments showed that the expression of bovine KPNA7 
protein is reduced in cells expressing miR-1296 compared 
to the control cells, indicating that translation of KPNA7 
is repressed by miR-1296 (67). Luciferase reporter assays 
using mutant constructs carrying mutations in the 
predicted binding sites on KPNA7 mRNA revealed that one 
of the binding sites (1156–1176 bp) is the primary binding 
site responsible for miR-1296 action (67). These results 
indicated a potential role of miR-1296 in regulating the 
expression of KPNA7 during early embryogenesis in cattle.

9. Conclusions
Characterization of expression profiles of numerous 
miRNAs originated from bovine oocytes, granulosal 
cells, luteal cells, and early embryos has demonstrated the 
potential importance of a significant number of miRNAs in 
the development of follicles, maturation of oocytes, luteal 
function, and early embryogenesis in cattle. However, 
very few of these miRNAs have been characterized with 
regard to their specific target genes and regulatory effects. 
Therefore, future studies should focus on identifying the 
specific targets of potentially important miRNAs and 
understanding the functional roles of these miRNAs 
in relation to ovarian function and early embryonic 
development in cattle. 
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