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1. Introduction
Developmental abnormalities of the reproductive system 
in farm animals can have different backgrounds and 
frequencies of occurrence depending on species. In 
ruminants such as cattle and sheep, the most common 
sexual anomaly is freemartinism, which affects females 
born as a part of an opposite-sex twin pair. It occurs in 
90% of opposite-sex twins in cattle and in 2%–20% of 
opposite-sex twins in sheep depending on breed (1,2). 
This phenomenon is caused by formation of arteriovenous 
anastomoses between placentas of opposite-sex twins 
during early fetal life that leads to direct interaction of 
their hormonal and immune systems and hematopoietic 
tissues. In consequence, the genital system of a female twin 
becomes masculinized. Sporadic cases of freemartinism 
have been also observed in goats, but with low frequency, 
not exceeding 1% (3,4).

Another developmental anomaly of the reproductive 
system, polledness intersex syndrome (PIS), occurs 
frequently in Capra hircus, but is observed very rarely 
in cattle and sheep. Potential association of polledness/
hornedness with goat sexual activity has been investigated 

thoroughly. First, it was established that polledness (P, 
polled) is an autosomal dominant trait in both sexes (5). 
Next, Soller et al. (6) indicated that polledness may be 
associated with an intersexualism, which is a recessive 
trait observed only in polled females with a typical 60,XX 
karyotype. The selective breeding of polled goats was 
linked to more frequent occurrences of intersexualism. 
In turn, a disturbed male-biased sex ratio was reported, 
as a consequence of wrong classification of sex-reversed 
females as males (7). That phenomenon seemed to be more 
complicated, because polled homozygotic (PP) males were 
characterized by a 20% decrease of fertility, associated with 
underdevelopment of the epididymides (8). Surprisingly, 
those males were revealed later to be, in fact, females with 
complete sex reversal. Additionally, heterozygotic polled 
(Pp) goats of both sexes were indicated to have slightly 
better fertility potential compared with horned (pp) 
animals (8). Further studies revealed that polled intersexes, 
in fact, were cytogenetic females with developed testes, but 
lacked a sex-determining region Y (SRY) in their genomes, 
which is pivotal for the male developmental path (9). An 
identification of molecular background of PIS, which is a 
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trait directly linked to polledness (5), allowed for better 
understanding of that phenomenon.

2. Molecular background of PIS
The polled intersex syndrome locus is located on goat 
chromosome 1q43 (10). Deep analysis revealed its 
significant homology with the 100 kbp human region 
associated with blepharophimosis-ptosis-epicanthus 
inversus syndrome, which is in fact caused by FOXL2 gene 
dysfunction (11). 

Further research indicated a deletion of 11.7 kbp to be 
the cause of occurrence of PIS (5). Although that region is 
considered noncoding because it mainly consists of 2 LINE 
sequences (2.2 and 2.6 kbp), its deletion affects chromatin 
structure and expression of PISRT1, PFOXic, and FOXL2 
genes (12,13). The deletion is located 25 kbp from PISRT1 
and 300 kbp from the PFOXic and FOXL2 genes (12,13). Of 
these genes, only FOXL2 is considered a typical gene, being 
transcribed and then translated into functional protein. 
It codes for a transcription factor containing a forkhead 
domain (14) and is thought, together with RSPO1, to be a 
major factor involved in ovarian differentiation (15). The 
first peak of FOXL2 expression takes place in early stages 
of ovarian development, before the beginning of germ 
cells meiosis. The second peak is observed at the time 
of folliculogenesis, and the FOXL2 gene remains highly 
expressed until adulthood (16). It is expressed mainly in 
ovarian pregranulosa cells, in which it is responsible for 
modulation of ovigerous cord fragmentation, primordial 
follicle formation, and follicular growth (17,18). A very 
interesting fact is that FOXL2 is under the control of a 
conserved bidirectional promoter also driving PFOXic 
gene transcription (17).

PISRT1 is another gene considered to be regulated 
by PIS region. It is transcribed, translated, and then 
transported to the cytoplasm (19,20). Although its role 
in tissue differentiation and gonadal development has not 
been precisely established, it seems to be a very important 
factor. The promoter region of the PISRT1 gene has been 
revealed to be highly conserved, based on comparison of 
PISRT1 gene sequences of mice, goats, dogs, and humans. 
Moreover, high expression of the PISRT1 gene is observed 
in properly developing fetal ovaries and testes, as well as in 
adults of both sexes (19,21). To investigate the hypothetical 
role of PISRT1 in gonadal development and female-to-
male sex reversal, transgenic PIS(-/-) goats were created. 
They had an additional copy of the PISRT1 gene, under 
control of a phosphoglycerate kinase 1 promoter, so it was 
independent from PIS regulation (22). Gradual increase of 
PISRT1 expression in males with proper testes, from final 
stages of the prenatal period to adulthood, implicated its 
potential role in correct gonadal differentiation. Although 
the additional copy of PISRT1 was highly expressed in 

PIS(-/-) transgenic goats with complete female-to-male 
sex reversal, their testes were not properly developed. In 
turn, Boulanger et al. (22) concluded that the potential 
role of PISRT1 in proper gonadal determination and 
differentiation remains unclear, and its contribution to 
the sex reversal phenomenon is doubtful. Nevertheless, 
PISRT1 is known to enhance FOXL2 expression in females, 
and its insufficiency in PIS(-/-) female goats is associated 
with significantly reduced FOXL2 expression (22).

3. Molecular consequences of PIS deletion
A decrease of transcription of the CYP19 gene coding 
for cytochrome p450 aromatase is the first molecular 
consequence of lack of the FOXL2 gene expression 
in polled female (60,XX) goats with PIS. This can be 
observed as early as 36 days post coitum (DPC), in the 
early stages of fetal development (23). As a consequence, 
the ovarian cortex is dramatically reduced, whereas pre-
Sertoli cells (the main component of fetal testes) are being 
properly differentiated. High expression of the SOX9 gene 
(SRY-related HMG box), the main modulator of testis 
differentiation in tandem with SRY, is observed in these 
cells in females with PIS, which is similar to that observed 
in males of the same age. SOX9 is a protein belonging to 
SOX family of transcription factors, which fulfill many 
functions in organogenesis, but its key role is in induction 
and formation of testes through an activation of genes 
involved in these processes (24). 

The main target of SOX9 is the promoter of the 
antimüllerian hormone (AMH) gene, which codes for the 
hormone responsible for regression of müllerian ducts in 
males (25). Additionally, AMH gene overexpression causes 
complete inhibition of CYP19 gene transcriptional activity. 
That process takes place at 46 DPC in sex-reversed PIS 
goats (23). In completely masculinized gonads of females 
with PIS with completely differentiated Leydig cells located 
between the seminiferous cords, the genes involved in 
steroidogenesis are expressed the same as in gonads of 
typical males. One of these genes, 3β-HSD, coding for 
3-β-hydroxysteroid dehydrogenase, is characterized 
by an expression profile typical of males in gonads 
of females with PIS, and the same situation concerns 
testosterone synthesis (23). An initiation of typical male 
pathway of gonadal development in sex-reversed females 
is a result of male expression profile of genes involved in 
differentiation of Sertoli and Leydig cells. In consequence, 
the secreting and steroidogenic activities of those cells 
determine the development of masculine deferent canals 
and external sexual organs, while the observed degree of 
masculinization varies among particular cases (23,25). 

During the neonatal and postnatal periods, expression 
of genes typical of the male in gonads of female-to-male 
sex reversals was similar to that observed in males of 
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analogous age. Considering that the testes of 1-month-
old sex-reversed females contained gonadal cords with 
immature Sertoli cells and gonocytes, it is understandable 
that they exhibited an expression profile of 3β-HSD, AMH, 
CLDN11, and SOX9 genes similar to that observed in testes 
of typical males of the same age (22,26). However, the 
expressional activity of those genes drastically decreased 
during maturation, which was linked directly to the 
degeneration of the seminiferous epithelium, supporting 
cells, and interstitial cells. On the basis of study of the 
gene expression profile in gonads of female goats with 
PIS during their first year of life (26), a clear association 
exists between SOX9 gene transcriptional activity and the 
functional state of Sertoli cells. Those cells were completely 
degraded and the SOX9 expression level was strongly 
reduced in the 12-month-old PIS females, while the 
situation was totally opposite in the properly developed 
males of that age.

4. The degree of masculinization of PIS female gonads
First reports of the early process of masculinization in 
polled PIS goat females were based on investigations of 
anatomy, histology, and gene expression in intersex fetuses 
(23). At 36 DPC, no histological differences were observed 
between gonads of males (XY) and PIS(-/-) females (XX). 
Nevertheless, at as early as 40 DPC, significant changes of 
ovarian development were observed, including a reduction 
of the ovarian cortex and an initiation of formation of 
seminiferous cords with a presence of pre-Sertoli cells, 
similarly as in gonads of males of the same age. By 56 
DPC, the changes were much greater: functional Leydig 
cells synthesizing androstenedione were present in the 
majority of PIS(-/-) females. Additionally, ovotestes 
with simultaneous presence of both seminiferous cords 
and reduced ovarian cortex were observed. That specific 
histological view of the gonads remained until birth. The 

same histological view at the same stage of development is 
observed in properly developing gonads of typical males. 
Nevertheless, at 70 DPC a reduction of seminiferous cords 
with disappearance of germ cells was clearly visible in 
PIS(-/-) females (23).

During both prenatal and postnatal periods, different 
degrees of masculinization were observed in particular 
PIS(-/-) female cases, but sex reversal was reported most 
often (26–28). Based on anatomical evaluation, those 
female-to-male sex reversals were classified as male 
pseudohermaphroditism, usually with developed testes 
rather than ovotestes.

In the first month of life, gonads of PIS(-/-) females 
mostly contained sex cords with basement membrane 
but lacking the lumen. Moreover, immature Sertoli cells, 
spermatogonia, and primordial germ cells were present. 
The latter were characterized by uncommon cytoplasmic 
content and dark dying nuclei (Figure 1), which can 
be interpreted as the sign of progressive elimination 
of primordial germ cells. Interestingly, the histological 
view of PIS(‑/‑) female gonads and the diameter of sex 
cords, which together indicated slight hypoplasia, were 
very similar to those described in males of the same age 
(26,29). Thus, the histological alterations observed during 
the neonatal period in gonads of PIS(-/-) females clearly 
indicated female-to-male sex reversal.

In the next months of life, the abnormalities of PIS(-/-) 
female gonads became easier to observe compared to the 
gonads of males of similar age (27,29). The first changes 
observed included progressive disappearance of genital 
cells, the lack of lumen in tightly packed seminiferous 
tubules, decreased number of interstitial cells in the 
gonadal stroma and its fibrosis, and partial loss of Sertoli 
cells. Somatically mature female-to-male sex-reversed 
goats with PIS(-/-) are very rare, because this condition is 
linked to abnormal functioning of the urinary and sexual 

Figure 1. Histological view of gonads of 1- (A), 3- (B), and 12-month-old (C) PIS(‑/-) 
goat females (30). 
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systems. Gonads of those individuals are usually very 
difficult for unambiguous identification (Figure 2), which 
is caused mainly by complete degeneration of Sertoli cells 
and total sterility of seminiferous tubules (26). In turn, 
in individual cases ovotestes were observed, which were 
simple to identify histologically because they consisted 
of 2 characteristic components: the testicular and the 
ovarian parts. The testicular area showed a presence of 
seminiferous tubules, exfoliation of Sertoli cells, and lack 
of germ cells, whereas in the ovarian area, structures 
similar to primary ovarian follicles, but lacking germ cells, 
were observed (23,26).

Apart from the presence of testes or ovotestes in 
particular sex-reversed PIS(-/-) females, the reproductive 
ducts may be masculinized to a different degree in particular 
cases. Three distinct conditions may be distinguished as: 1) 
the ducts being typical for males (the phenotypic sex being 
in agreement with the gonadal sex), 2) the ducts having 
a combination of masculine and feminine features, 3) the 

ducts being typical for females (the phenotypic sex being 
in contradiction with the gonadal sex) (30).

The development of external genital organs also 
may vary among particular PIS(-/-) sex-reversal cases. 
Nevertheless, the most common condition is a more 
or less developed male phenotype with a dysfunctional 
penis (lacking urethral process) and testes located in 
the abdominal cavity, inguinal region, or scrotum. 
Additionally, rare cases exhibit female phenotype with 
significantly enlarged clitoris and hypospadias (26).

The molecular background of ambiguous sexual 
development, including atypical gonads, reproductive 
ducts, and external genitalia, is well established in PIS(-
/-) goat females. A similar situation applies to other 
syndromes (e.g., freemartinism) and other species (31,32). 
The phenotypic diversity in goats with PIS is most likely 
an effect of the complexity of the sexual differentiation 
process, in which the gene-dosage effect may potentially 
play a crucial role, in addition to the numerous molecular 

Figure 2. Female sexual system (A), female sexual system with male features (B), and 
male sexual system (C) observed in somatically mature female-to-male sex-reversed 
goats with PIS(-/-) (30). 

Figure 3. Female (A) and male (B) genitalia observed in somatically mature female-to-
male sex-reversed goats with PIS(-/-) (30).
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factors regulating the developmental pathway. The 
occurrence of that phenomenon may result in abnormal 
development of the sexual system, and also may explain 
different degrees of masculinization, including complete 
sex reversal, observed in PIS(-/-) goat females (23,33).

5. Conclusion
A sex-reversal phenomenon appearing in PIS(-/-) female 
goats (60,XX) is not considered to be a serious problem in 
breeding programs, because properly planned selection 
of individuals for reproduction can allow for complete 
exclusion of the risk of occurrence of this syndrome in 

offspring. That may be ensured by inclusion of at least 1 
horned individual in every mated pair. If any intersexual 
offspring occur, it would not be PIS-related. On the 
other hand, female goats with PIS are still one of the 
most suitable animal models for studying the complex 
processes of determination and differentiation of sex in 
mammals.
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