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1. Introduction
Fats are used commonly as a component of feed for high-
performance dairy cows due to the difficulties involved in 
satisfying their energy needs, especially in the first period 
of lactation (about 100 days after parturition). Dairy cow 
diets are supplemented with fat primarily to increase 
the energy density of the diet and thus to enhance milk 
production, growth, and reproduction (1). The increase 
in dry matter intake in early lactation is gradual, while a 
rapid increase in milk production occurs after calving. This 
affects high-yield cow energy status by causing a period of 
negative energy balance (NEB). Energy deficiency leads to 
increased lipolysis and release of free fatty acids (FFAs) into 
the blood. Excess FFA concentrations in the blood cause 
accumulation of triglycerides in the liver and significant 
increase in production of ketone bodies (2,3). In early 
lactation, NEB of dairy cows delays the start of normal 
ovarian activity. Energy deficit also disrupts hormone 
status, mainly by reducing secretion of luteinizing 
hormone, thus contributing to abnormal development of 
ovarian follicles (3). Additionally, the number of estrous 
cycles are reduced, estrus symptoms are poorly manifested, 
the quality of oocytes falls, and embryo mortality increases. 
These factors lower the efficiency of artificial insemination 
and successful reproduction rates (4). 

Furthermore, fat influences metabolic changes and 
reproductive functions depending on the amount, type, 

physical form, and profile of the fatty acids in the ration. 
When fat is fed at the beginning of lactation, it can satisfy 
to some extent the energy needs associated with the 
synthesis of milk rather than fat reserves. The influence of 
unprotected fat can be unfavorable because of decreasing 
number of cellulolytic bacteria and protozoa. Moreover, 
the adhesion between microorganism and feed in the 
rumen is disrupted. The negative effect of fat on ruminal 
fermentation can be reduced by its ‘protection’. On the one 
hand, this concerns the protection of the environment 
of the rumen, and on the other it refers to fat security 
before hydrogenation. The protected fat can be obtained 
by various methods such as encapsulation and calcium 
salt formation of fatty acids (5,6), although Ca salts will be 
affected by a number of factors including ruminal pH and 
degree of unsaturation and chain length of the fatty acid.

Vegetable oils contain a number of monounsaturated 
fatty acids and polyunsaturated fatty acids (PUFAs) (e.g., 
oleic, linoleic, linolenic). Palm oil contains about 35% 
palmitic acid C16:0 (saturated acid). Extruded oil seeds are 
subjected to only partial protection. Fish oil contains many 
long-chain PUFAs, including eicosapentaenoic acid (EPA) 
C20:5 n-3 and docosahexaenoic acid (DHA) C22:6 n-3 (7–
10). Likewise, marine algae seaweeds contain high levels of 
PUFAs, especially DHA (11). Research shows that better 
quality oocytes are found in cows treated with higher (800 
g/day) levels of protected fat (calcium salts) in the ration as 
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compared to lower amounts (200 g/day) (12). By using fats 
rich in unsaturated fatty acids (43.2% C18:1 trans), a higher 
percentage of fertilization and embryo development (more 
blastomeres) can be achieved in contrast to cows receiving 
palm oil (8). Introduction of PUFAs (EPA and DHA) into 
cow diets may significantly reduce synthesis of PGF2α in 
the endometrium during early pregnancy (13,14). These 
PUFAs may have a direct impact on key genes and proteins 
that regulate biochemical processes and affect survival 
of embryos (15). Free arachidonic acid (AA), or other 
PUFAs, generated is then metabolized by prostaglandin 
endoperoxide synthase (PTGS) enzymes, of which PTGS1 
and PTGS2 are the most relevant to reproductive biology 
(14). Although EPA is a substrate for both PTGS1 and 
PTGS2, its metabolism via PTGS1 is poor (about 10% that 
of AA), which means that its ability to generate 3-series 
PGs is also poor (16). Not only is EPA an inhibitor of 
PTGS1 activity and 2-series PG generation, but it also 
does not induce a concomitant increase in 3-series PG 
generation via PTGS1. 

2. Reproduction problems and importance of PUFAs in 
feeding 
Reproductive disorders are a serious problem in all 
countries with high-performance dairy cows. Heat stress 
is major factor that lowers effectiveness of artificial 
insemination, causing irregularities in estrus. One 
reproductive failure is mortality of embryos during the 
preimplantation period, which may be as high as about 
30% in the first month after insemination (17).

	 Many metabolic and endocrine signals involved 
in reproductive processes are regulated by nutritional 
status.  Maintaining a high level of progesterone in 
the blood (the active corpus luteum) is a condition of 
pregnancy in the preimplantation period. Many studies 
have highlighted the importance of 2-series prostaglandins, 
in particular PGF2α. Embryonic trophoblast secretes 
interferon-tau (IFN-t) between 14 and 18 days after 
fertilization in order to reduce the release of PGF2α from 
the endometrium (18,19). If the embryo cannot inhibit 
the synthesis of PGF2α, luteolysis and termination of 
pregnancy occur. The antiluteolytic properties of IFN-t 
rely on inhibition of expression of oxytocin receptors and 
the reduced expression of cyclooxygenase (COX-2), which 
is responsible for the secretion of prostaglandins (20). 
The result of this interaction is a change in the secretion 
profile by endometrial prostaglandin PGF2α in favor of 
PGE2, which is an inhibitor of luteolysis. If the fertilized 
egg cannot control synthesis of PGF2α, luteolysis of the 
corpus luteum and abortion occur. Under the influence of 
IFN-t in early pregnancy, the concentration of AA in the 
endometrium decreases.

One mechanism to affect development and maintenance 
of pregnancy could be increased concentrations of 

PUFAs. By modification of the feed of cows, EPA and 
DHA can be used to reduce synthesis of PGF2α in the 
endometrium during early pregnancy (21). These acids 
can inhibit synthesis of PGF2α by reducing the availability 
of AA, a precursor of prostaglandins, and by increased 
competition with AA binding to specific prostaglandin 
synthase (15,22–24). During biosynthesis, linoleic acid 
(C18: 2n-6) is converted to AA (C20: 4n-6), a precursor 
of type-2 prostaglandins. Similarly, in the enzymatic 
processes of elongation and desaturation of n-3, fatty 
acids (α-linolenic acid, C18: 3n-3) are converted to EPA 
(C20: 5n-3), a precursor of prostaglandin series-3 (Figure 
1). Competition between acids of n-3 and n-6, which 
are precursors of prostaglandin synthesis of different 
pathways, is possible. Thus, a change in lipid metabolism 
may affect synthesis of prostaglandins.

3. Effect of fish oil on cow reproduction  
Feed fat can influence successful reproductive outcomes in 
2 processes: 1) fatty acids are the precursors of the synthesis 
of steroid hormones (via cholesterol carried by LDL); 
and 2) fatty acids are the precursors of the synthesis of 
prostaglandins (AA) (10). A positive effect of fat addition 
to the feed ration (from Ca salts of fish oil fatty acids) may 
also arise from an increase in glucose and insulin in plasma 
(13), which can stimulate growth of ovarian follicles. 
Zachut et al. (10) observed that large amounts of dietary 
n-3 fatty acid (providing 242.2 g of C18:3 n-3) effectively 
pass to the blood, affecting the activity of the ovaries and 
increasing the cleavage rate of fertilized oocytes. Selective 
uptake of fatty acids by the oocytes shows sensitivity to 
changes in the membrane composition. This may lead to 
changes in membrane properties, such as, for example, 
changes in the viscosity and membrane performance 
characteristics (12,26,27).

It is claimed that the use of fats rich in unsaturated 
fatty acids would result in more effective insemination and 
embryo development (more blastomeres) in comparison 
to cows receiving palm oil (8). Similarly, a beneficial effect 
on folliculogenesis can be implemented by feeding cows 
encapsulated linseed oil, 3.8% dry matter, and 40.8% 
flaxseed oil (10). These studies claimed to demonstrate a 
larger number of follicles and more and larger oocytes. 
Evans et al. (28) and Mossa et al. (29) confirmed that 
application of n-3 fatty acids causes an increase in 
folliculogenesis by increasing the number and size of 
oocytes during the estrous cycle, which positively affects 
the performance of dairy cattle fertility. The presence of 
n-3 fatty acids in the diet causes a change in the fatty acid 
profile in the cumulus–oocyte complexes (COCs), in a 
similar manner as in the follicular fluid and granulosa cells 
(27). The diet used in these studies contained flaxseed oil 
and fish oil. These studies indicate the existence of selective 
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uptake of various fatty acids of n-3 by COCs, which favors 
the penetration of the longer n-3 fatty acid into the oocyte 
rather than a shorter chain, such as ALA.

In vitro, EPA and DHA inhibited PGF2α secretion in 
cultured endometrial cells (BEND) (30). The effect of 
linoleic acid (n-6) was considerably lower than that of 
EPA and DHA in inhibiting secretion of PGF2α

 (Figure 
2). These findings suggest that the effects of EPA on 
secretion of PGF2α  are mediated by mechanisms that 
involve competition of precursors for processing by PG 
endoperoxide H synthase enzymes and regulation of 
enzyme activity. Reduction of PGF2α secretion in response 
to stimulation with phorbol 12,13-dibutyrate was caused 
by dose-dependent concentrations of the n-3 PUFAs. 
However, feeding of n-3 fatty acids to heifers did not 
affect expression of genes in the endometrium encoding 
the oxytocin receptor, phospholipase C, cyclooxygenase-1 
(COX-1), COX-2, or PGE-9-reductase (31). The expression 
of genes that are responsible for synthesis of prostaglandins 
in the endometrium may depend on supplementation 
with an oral dose of PUFA n-3. In in vitro cultures, n-3 
inhibition of biosynthesis of PGF2α also depends on the 
n-6:n-3 fatty acid ratio, and the introduction of EPA and 
DHA into the cell culture reduced the production of PGF2α 
(32). Conjugated linoleic acids (mixture isomers; CLAs) also 
inhibited synthesis of PGF2α in the uterus independent of the 
concentration of linoleic acid or the n-6:n-3 ratio (33).

PUFAs affect many factors related to the synthesis and 
metabolism of essential reproductive hormones such as 
progesterone (P4) and estradiol (E2). According to Walsh 
et al. (34), an important role is played by P4. The test cows 
exhibited both delayed increase in plasma concentrations 
of P4 after ovulation and lower plasma concentrations of 
P4 in the luteal phase. In addition, low levels of interferon 
t on the 16th day after insemination provided the latest 
development of the embryo. The use of food supplements 
containing fish oil during the estrous cycle increased the 
synthesis of P4. The increase in plasma P4 during the 
estrous cycle can vary endometrial secretion to stimulate 
the development of the embryo, which leads to an 
enhanced ability of the embryo in signaling its presence 
in the uterus (4). 

Inhibition of prostaglandin production by n-3 fatty acids 
prevents regression of the corpus luteum after prolonged 
release of P4 (24). After application of fish meal or fish oil 
in the nutrition of cows, DHA and EPA concentrations in 
the lipids of the uterus increased together with a reduction 
of PGF2α in the endometrium (22,23). Mattos et al. (35) 
found that administration of fish meal to lactating cows 
reduced secretion of PGF2α, while Wamsley et al. (36) 
observed that supplementation did not affect secretion 
of PGF2α in heifers that had normal concentrations of P4. 
With reduced concentrations of P4, heifers responded 
with a downward trend in concentration of PGF2α. Heravi 

Figure 1. Effect of polyunsaturated fatty acids in the feed on prostaglandin synthesis pathways [authors’ modification 
of work by Wathes et al. and Mattos et al. (14,25)].
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Moussavi et al. (37) also concluded that supplementation 
with fish meal (from 1% to 5% DM) and protected fish oil 
resulted in a significant increase in the concentration of n-3 
acids (EPA, DHA) in the endometrium, but there was no 
effect on synthesis of COX-2 or PGF2α in the endometrium. 
Childs et al. (15) confirmed that the use of protected fish 
oil caused a significant increase in the content of EPA and 
DHA in the endometrium (Table 1). There was a positive 
correlation between the content of EPA (R2 = 0.86, P < 
0.0001) and the total amount of n-3 PUFA (R2 = 0.77, P < 
0.0001) in the blood and the endometrium. However, fish 
oil did not affect secretion of PGF2α. In turn, Silvestre et 
al. (38) showed that pregnancy by artificial insemination 
increased at 30 and 60 days after the second insemination 
in cows fed fish oil and palm oil. Fertilization in cows 
fed fish oil was associated with reduced production of 
TNFα when neutrophil lipopolysaccharide was stimulated 
during the whole period of insemination (38).

In our study (39), carried out according to the 
methodology proposed by Mattos et al. (22) and Heravi 
Moussavi et al. (13), we evaluated the effect of long-
term use of protected fish oil and algae on secretion of 
13,14-dihydro-15-keto PGF2α (PGFM). The procedure 
was used to assess the impact of supplementation of 
EPA and DHA in reducing the secretion of PGF2α in the 
endometrium. Findings indicated no statistical difference 
between the groups after i.v. administration of oxytocin, 
and the dynamics of PGFM concentration were similar in 

each group (Table 2). It was reported that a small increase 
in the concentration of PGFM was observed 30 min 
after administration of oxytocin in all groups receiving 
increased PUFA.

There have also been investigations as to whether the 
ability to synthesize IFN-t depends on the size of the CL 
(40), whereby insufficient CL size cannot corroborate the 
theory for the synthesis of the PGF2α, consequently leading 
to luteolysis. Increases in the amount of protected fish oil 
led to a CL increase at day 7 of the synchronized estrus 
cycle (control: 17.5 mm; high content of fish oil: 24.1 mm), 
with no effect on the diameter of CL on days 17 and 18 
(15). Our study showed significant differences in the size 
of dominant follicles in the ovaries at 60 days postpartum 
after application of protected salmon fish oil (control: 
12.10 ± 3.83 mm; salmon fish oil: 15.57 ± 3.69 mm (39).

Cholesterol is responsible for synthesis of steroid 
hormones, in particular P4 and E2. The high content 
of n-3 in the diet is associated with low levels of serum 
cholesterol, which may reduce synthesis of P4 (41). 
In previous studies, cholesterol concentration after 
application of protected fish oil increased in the blood 
serum of cows at peak lactation (9). 

Unsaturated fatty acids have an influence on the 
expression of genes involved in various metabolic processes 
(42). Peroxisome proliferator-activated receptors (PPARα, 
PPARγ, and PPARδ) are a family of nuclear receptors that 

Figure 2. PGF2α-induced secretion in cultured endometrial cells (BEND) (29).

Table 1. Fatty acid content in the endometrium (mg/g) using different amounts 
of protected fish oil [modified from Childs et al. (15)].

Fatty acid Control Low content
(1.04% DM)

High content
(4.15% DM)

AA (C20:4 n-6) 0.29a 0.22ab 0.17b

EPA (C20:5 n-3) 0.03a 0.10b 0.18c

DHA (C22:6 n-3) 0.11a 0.27b 0.33b

n-6/n-3 3.63a 1.80b 1.06c

a, b, c: Within rows, concentrations with different letters are significantly 
different (P < 0.05).
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are activated by binding to natural ligands, such as PUFAs 
(43). Adjustment of the liver fatty acid transcription 
gene is controlled by transcription factors PPARγ and 
SREBF1. Transcription factors regulate the activity of 
many genes involved in fatty acid transport (SLC27A1 
and FABP1), synthesis of triacylglycerols (DGAT1), and 
fatty acid oxidation (CPT1, ACOX1, and ASCL1) (44). 
In Hutchinson et al.’s studies (1), expressions of the genes 
ASCL1, FABP1, and SREBF1 were reduced in the case 
of cows supplemented with fish oil as compared to other 
dietary strategies involving the use of flax seed and using 
synthetic isomers of CLA. Differences in the fatty acid 
composition of the original fish oil supplementation may 
be the cause for the differences in hepatic gene expression. 
Unlike the other additives used, which contained fatty 
acids of C18 or fewer carbon chains, fish oil contains a 
considerable number of very-long-chain PUFAs, EPA, 
and DHA. Deckelbaum et al. (45) found that EPA, DHA, 
and AA have more inhibitory effects on the expression of 
SREBF1 than shorter-chain PUFAs. This hepatic inhibitory 
effect results in a reduced expression of FABP1 and 
ACSL1 genes, as well as SREBF1, which is the principal 
modulator of these genes. Recent research has focused on 

determination of the effect of fish oil and marine algae on 
mRNA abundance of genes encoding proteins required 
for FA uptake, de novo FA synthesis, desaturation, and 
transcriptional regulation of lipid synthesis in mammary 
and liver tissues in lactating dairy cows (46). 

4. Conclusion
Supplementing dairy cow diets with fats containing PUFAs 
may improve reproductive functions through positive 
effects on the endocrine system, ovum, embryo, and 
synthesis of prostaglandins. Use of PUFAs in animal feed 
in the form of fish oil supplementation caused a visible 
increase in the concentration of acids of the n-3 acid in the 
milk and endometrium. The influence of EPA and DHA 
fatty acids on the synthesis of PGF2 is not straightforward. 
The n-3 fatty acids are likely to improve the survival rate of 
embryos in cattle. Some studies indicate an antiluteolytic 
impact of EPA and DHA, by inhibiting secretion of PGF2α 
in the uterus through the mechanisms of reducing the 
availability of AA precursors. Moreover, the increased 
supply of PUFAs during the first period of lactation can 
prevent NEB and increase productivity of cows. In the 
near future, the role of fatty acids, including n-3, will play 
increasingly greater importance in animal nutrition.

Table 2. Dynamics of 13,14-dihydro-15-keto PGF2α (pg/mL) content changes after 
oxytocin injection [authors’ modification of the work of Kupczyński (39)].

Item
Time after administration of oxytocin (min)

0 30 60 120 150

Fish oil
x 362.33A 882.89B 802.11B 613.34C 549.77D

SD 217.41 266.04 305.83 302.19 201.28

Marine algae
x 356.38A 744.80B 761.03B 618.73C 396.43D

SD 230.87 271.19 395.92 274.64 280.49

Control
x 361.35A 948.99B 725.01B 562.64C 538.33D

SD 203.88 216.35 380.66 247.09 290.52

A, B, C, D: Significance of differences between blood donation appointments in different 
groups at P < 0.01.
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